

Arboricultural Statement

Land to the west of Parsons
Field Stables, Pickhurst Lane,
Pulborough RH20 1DA

Prepared by

Jonathan Rodwell Cert Arb L4(ABC); TechArborA

July 2025

CONTENTS

-	Summary, details and references	1
1.0	Introduction	2
2.0	Documents provided	2
3.0	Legislation	3
4.0	Application	3
5.0	Site visit & observations	3
6.0	Comments	4
7.0	Summary, conclusions & recommendations	5

Appendix 1 - images

SUMMARY

- A site visit to assess the potential effects of completed construction and landscaping work on trees in the strip of woodland to the west of the site was undertaken.
- A brief report with observations, comments, conclusions & recommendations was prepared.

Details

- Date of visit - 18th July 2025
- Present at visit - Jonathan Rodwell Cert Arb L4(ABC); TechArborA
- Date of statement - 23rd July 2025

Contact Details

<u>Local Planning Authority</u>	Horsham District Council	Tel - 01403 215187 Email - planning@horsham.gov.uk
<u>Architects</u>	Manorwood	Tel - 01243 201102 Email - Ben@manorwood.co.uk
<u>Arboricultural Consultants</u>	Beechdown Arboriculture Ltd	Tel - 01243 814740 Email - jonathan.rodwell@beechdown.com

References

Ben Rose (2020) Guidance Note 12 - *The Use of Cellular Confinement Systems Near Trees: A Guide to Good Practice*. Arboricultural Association.

Roberts, J. Jackson, N. Smith, M. (2006). *Tree Roots in the Built Environment*. The Stationery Office

BSI British Standards (2012) BS 5837:2012 *Trees in relation to demolition and construction – Recommendations*, Fourth (Present) Edition. BSI

Jonathan Rodwell Cert Arb L4(ABC); TechArborA
Beechdown Arboriculture Ltd

23rd July 2025

1.0 Introduction

1.1 I have received instruction from Ben Kirk BSC (Hons), of Manorwood, to advise on arboricultural matters in relation to a retrospective planning application for continuous use of land west of Parsons Field Stables, Pickhurst Lane, Pulborough RH20 1DA.

1.2 The purpose of the instruction was to:

- Undertake a site visit to assess the potential effects of completed construction and landscaping work on trees in the strip of woodland to the west of the site.

1.3 My site visit and comments refer to the guidelines detailed in BS 5837:2012 "Trees in relation to design, demolition and construction – Recommendations" and according to good arboricultural practice.

1.4 **Qualifications and experience** – I am a qualified arboriculturist and Technician Member of the Arboricultural Association with more than 35 years' experience working with trees. I have a National Certificate in Arboriculture, the ABC Level 4 Certificate in arboriculture and the LANTRA Professional Tree Inspection Certificate along with certificates of training/attendance including arboricultural consultancy & report writing, veteranisation, valuing & managing veteran trees, subsidence investigation, assessment of tree forks, instrumental tree assessment, mortgage reports and risk assessment for commercial arboriculture.

2.0 Documents Provided

2.1 Drawings provided by Manorwood:

2502MB_R3_001	Block plan - proposed	1:500@A3
---------------	-----------------------	----------

2.2 Documents referenced:

Horsham District Council	Delegated Applications-Assessment Sheet	Pages 12 & 13 - trees
--------------------------	---	-----------------------

3.0 Legislation

- 3.1 **Tree Preservation Orders & Conservation Areas** - consultation with the Local Planning Authority (LPA) confirmed that the application site is not within a designated conservation and it is not subject to a tree preservation order, however; woodland to the south of the site at Gerrards Rough is covered by woodland tree preservation order **TPO/0706**.
- 3.2 **Ancient Semi-Natural Woodland (ASNW)** – sections of the TPO woodland at Gerrards Rough are also designated as ASNW and Local Planning Policy – consistent with the National Planning Policy Framework - will refuse planning applications that result in the loss or deterioration of irreplaceable habitats such as ancient woodland or veteran trees.
- 3.3 **Wildlife legislation** – under Part 1 of the Wildlife and Countryside Act (1981), with only a few exceptions, it is an offence to intentionally take, damage or destroy the nest of any wild bird while the nest is in use or being built. Bat species are protected under Section 39 of the 1994 Conservation (Natural Habitats etc.) Regulations (as amended), the 1981 Wildlife and Countryside Act (as amended) and the 2000 Countryside and Rights of Way Act. It is illegal to damage or destroy any bat roost, whether occupied or not, or disturb or harm a bat. Further specialist investigation may be required before undertaking any recommended works.

4.0 Application

- 4.1 The application seeks retrospective planning permission for the continuous use of land for the stationing of 2 static caravans for residential purposes with day rooms and the erection of two stable blocks and associated landscape works. The proposal includes the installation of close-board fencing to the perimeter, hardstanding within the site and the installation of entrance gates.

5.0 Site Visit & Observations

- 5.1 My observations, comments, conclusions and recommendations relate largely to the completed landscape and construction work within influence of the narrow strip of mixed woodland on the western boundary of the site; and in particular newly installed fencing, a new access drive and a new stable block.
- 5.2 The loss of roadside hedgerow is being addressed as an ecological issue and forms no part of this report. The impact of proposed drainage works on individual trees and ancient semi-natural woodland to the south of the site will be dealt with in a separate arboricultural report.

5.3 **Narrow strip of mixed woodland** – the strip of woodland on the western boundary, between the site and the track, is fairly narrow at the northern end where it meets Pickhurst Lane and gradually widens as the track slopes down to the bridge and culvert. The dominant trees were mature English oak, ash & field maple with an understorey of establishing field maple, hawthorn, hazel, holly and a shrub layer of natural regeneration in a woodland floor of bramble & ivy-cover. The mature trees were well-established with typical levels of deadwood and ivy-cover extending up into some of the crowns. The larger trees had stem diameters of around 450mm-750mm and would be considered BS5837 Category B with understorey trees classed as Category C based on stem diameters alone. Several of the ash were showing symptoms of Chalara dieback of ash - from early stage colonisation to entirely dead trees. A three-stemmed ash midway along the boundary had a broken stem hung up in the crown of the English oak (T1) and fungal brackets of *Inonotus hispidus* below a woodpecker hole at around 4m. The English oak (T1) had the remains of a broken branch stub at around 6m to the east and there was an entirely dead oak in the strip of woodland where the west and south boundary fences meet.

5.4 **New close-board fence** – the close-board fence is located between the new access drive and the strip of woodland. Posts for the fence are unevenly spaced with some positioned fairly close to coppiced hazel and young field maple and one post 4m-5m away from the mature English oak (T1).

5.5 **New access drive** – the new driveway extends parallel to the close-board fence and is a gravel surface over a base layer built up above the existing ground-level.

5.6 **New stable block** – the thin concrete pad foundation for the stable block sits on top of a fairly loose aggregate sub-base bearing directly on the existing ground-level.

6.1 **Comments**

6.1 **New close-board fence** – post holes for the close-board fence have been dug within the rooting area of the woodland edge trees. The fence is close-board rather than panel and without the restriction of a fixed panel size the posts are unevenly spaced which would indicate that they may have been positioned to avoid larger roots. It is not clear whether the post holes were lined with impermeable membranes before the concrete was poured but there is a risk to tree health from the alkaline properties of uncured cement.

6.2 **New access drive** – the new driveway is built up above the existing ground-level and with no obvious signs of excavation but again impacts directly on the rooting area of some of the woodland edge trees. The surface layer is an Beechdown ref: B/0583/25

angular stone fill above an aggregate base layer that may contain fines and it is not obvious whether a permeable geotextile membrane is in place. With no excavation I think it unlikely that there has been direct damage to tree roots, however; an increase in levels and soil bulk density means there could be reduced pore spaces in the soil with impeded water porosity and reduced oxygen levels.

6.3 **New stable block** – the thin concrete pad foundation and loose aggregate sub-base for the stable block is located within the root protection area (RPA) of three mature English oaks. With the foundation above ground level I think it is unlikely that there has been any excavation or significant risk of direct root damage but again it is possible that compaction, impeded porosity and reduced oxygen levels will have an impact on long-term tree health. To determine the likely impact I recorded the stem diameter of the three trees to calculate their nominal RPA and concluded that the new stable block impacts directly on the RPA of T1 by around 9%, T2 by 8.5% and T3 by 13%.

7.0 Summary, Conclusions & Recommendations

7.1 In summary I note the following points.

Trees:

- There are no signs of decline at this point that can be attributed to the recently completed work;
- the dead oak where the west & south fences meet predates the change of site use;
- affected ash trees are showing typical symptoms of different stages of Chalara dieback of ash rather than from construction-related damage;
- the strip of woodland had standing dead trees, high volumes of deadwood, cavities, broken branches, tear-outs ivy-cover etc. that are typical & important features of woodlands and offer excellent habitat potential, however; dead & dying trees represent some risk to users of the track while the broken stem of the ash suspended in the crown of the English oak (T1) represents a greater risk to those on site now the use has changed;
- the branch stub on the English oak (T1) shows signs of fracture consistent with either Summer Branch Drop or whole branch removal.

New close-board fence:

- I do not think it likely that excavation for post-holes will have resulted in significant root loss;
- if the post-holes have not been lined with membrane prior to concrete being poured there is some risk that contact between minor severed roots and the alkaline properties of uncured cement will lead to an increase in pH which can interfere with nutrient uptake and lead to chlorosis and poor growth;
- any damage is likely to be more significant on young trees with less developed root systems but is likely to occur only if there has been root severing and contact with uncured cement and with symptoms of decline becoming apparent over time.

New access drive:

- With the access drive raised above ground level I do not consider it likely there has been direct physical damage to roots during the surfacing work;
- the surface and sub-base retain porosity but the load bearing surface has the potential to increase soil bulk density, reduce pore spaces in the soil, impede water porosity and reduce oxygen levels with the potential to affect root growth & function leading to a decline in overall tree health;
- any damage is likely to be less significant on younger trees in the shrub layer & understorey with smaller root systems less impacted by the surfacing work;
- any potential impact on the mature trees with larger root systems will only become apparent over time.

New stable block:

- As with the access drive the foundation for the stable block is raised above ground level and I do not consider it likely there has been direct physical damage to roots during the installation;
- the thin concrete pad foundation and loose aggregate sub-base for the stable block foundation is not porous and will impede water infiltration and gaseous exchange with the potential to affect long-term tree health;
- the mature English oaks (T1-T3) are the closest mature trees to the stable block which impacts on their nominal RPA by around 9%, 8.5% & 13% respectively;
- with a fairly limited impact on the RPA the effects of the foundation may be negligible but again will only become apparent over time; the tree at greatest risk of long-term damage is the oak (T1) which is more likely to have been affected by both surfacing & foundation construction.

7.2 In conclusion I consider that construction of the close-board fence will have had little impact on the trees, with those at greatest risk likely to be BS5837 Category C young hazel & field maple in the shrub layer closest to fence posts; construction of the new access drive is unlikely to have a long-term impact on those trees in the shrub layer & understorey with smaller root systems or the mature ash with Chalara dieback but has the potential to cause harm that may lead to the accelerated decline of mature English oaks and field maples closest to the driveway; the foundation base for the stable block is unlikely to have a significant impact on the smaller trees in the shrub layer & understorey but does have some impact on the RPA of the English oaks (T1-T3) – the tree at greatest risk of decline is the English oak (T1) that is impacted by both new surfacing work and foundation construction within the RPA.

7.3 The trees are not protected and potential long-term damage is not a criminal offence that could lead to enforcement action, however; Policy 33 of the Horsham District Planning Framework (2015) does presume in favour of the retention of existing important landscape and natural features including trees.

7.4 I recommend that an annual inspection, for the next five to ten years, is undertaken to assess tree condition and monitor possible decline of individual trees. Images at **Appendix 1** show the physiological condition of woodland edge trees on the 18th July 2025 and should form the basis for monitoring any decline. Tree losses attributable to the construction and landscape work should be replaced with appropriate native trees.

7.5 In the meantime, some conservation-mix planting within the strip of woodland will improve screening and enhance biodiversity, as outlined below.

<u>Common name</u>	<u>Scientific name</u>	<u>Principal biodiversity value</u>
Blackthorn	<i>Prunus spinosa</i>	Nectar source, berries and cover for nesting birds
Crab apple	<i>Malus sylvestris</i>	Nectar source and fruit.
Guelder rose	<i>Viburnum opulus</i>	Nectar source, berries and cover for nesting birds.
Hawthorn	<i>Crataegus monogyna</i>	Nectar source, berries and cover for nesting birds.
Hazel	<i>Corylus avellana</i>	Nectar source, nuts and cover for nesting birds.
Holly	<i>Ilex aquifolium</i>	Evergreen, berries and winter cover; nesting sites for birds.
Rowan	<i>Sorbus aucuparia</i>	Nectar source and fruit.
Wild cherry	<i>Prunus avium</i>	Nectar source and fruit.

Appendix 1 – images showing tree physiological condition on 18th July 2025

Fig. 1 – Image showing shrub layer & understorey of hazel, hawthorn, holly & field maple at the northern end of the site with mature oak and field maple in the background and ash showing symptoms of Chalara dieback circled in red.

Appendix 1 – images showing tree physiological condition on 18th July 2025

Fig. 2 – Image showing shrub layer & understorey at the mid-point of the boundary with the branch stub on the English oak (T1) circled in blue and ash showing symptoms of Chalara dieback circled in red.

Appendix 1 – images showing tree physiological condition on 18th July 2025

Fig. 3 – Image showing mature trees adjacent to the stable block with the English oaks (T1-T3) circled in red.

Appendix 1 – images showing tree physiological condition on 18th July 2025

Fig. 4 – Image showing dead English oak where the west & south fences meet.

Appendix 1 – images showing tree physiological condition on 18th July 2025

Fig. 5 – Image showing most of the trees within influence of the completed work in good physiological condition bar the ash with Chalara dieback.