

302 TQ34/9

77

TQ3186 4141

Smallfields

3. REDE HALL, Mr. Tobbs.
 Bored and communicated by MESSRS. DUKE and OCKENDEN.
 Abundance of water, rising 3½ feet above the ground.

	Thickness.	Depth.
	Feet.	Feet.
Well (? old), the rest bored	...	47
Soft blue rock	32	79
[Weald Clay.]	{ Hard rock, with veins of clay a few inches thick ...	66 145
	5	150

6" 42 N.W./N.

Not classifiable in detail.

Probably Weald Clay to about 50
 OTW but argillaceous to about 100
 OTW silts with sandstones to about 150.

R.G. 8/1/64.

DATA Bank

Published in W.S. Survey.
 p. 175.

302/77 Rede Hall, Burstow (formerly Red Hall Farm). (Disused)

W.S.S. pp. 123 and 175. Surface +200. Shaft 47; rest bore. Water struck at +160 to +153. Overflowed. R.W.L. +203½. Dando, 1894.

TQ34/9

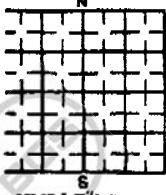
WC	P 50
UTW	P 100 150

GEOLOGICAL CLASSIFICATION	NATURE OF STRATA	THICKNESS	DEPTH
WEALD CLAY	WELL (?) OLD THE REST BORED	—	47'
	SOFT BLUE ROCK	32'	79'
	HARD ROCK WITH VEINS OF CLAY A FEW INCHES THICK	66'	145'
	SOFTER STRATA	5'	150'

302/111 Prestwood Farm, Ifield

TQ23/9

Surface +300. Shaft 37½; rest bore. Lining tubes: 64 x 4½ in from 34 down (perforated 66 to 98). Water struck at +223. R.W.L. +239. Suction +216. Yield 750 g.p.h. (8 h. test). Dando, June 1944.
R.W.L. +240. Yield 750 g.p.h. June 1947.


WC

98

98

GEOLOGICAL CLASSIFICATION	NATURE OF STRATA.	THICKNESS	DEPTH
W.C. BL 302/111/64	BLUE CLAY & SHALE	98'	

Location of Well						Property owner's name and address																																																																																	
by SUSSEX HANDBROOK		Township Number N or S	Range Number E or W	Section No.	Fraction	TQ 23 SW/46 TQ 23/26 TQ 23 SW/46																																																																																	
At Address and City or Distance and Direction from Road Intersections EASTERN L.S SOUTHERN E.A. 302																																																																																							
Sketch map of well location																																																																																							
		Addition Name Block Number 10 240308 Lot Number																																																																																					
Notes, Elevation, Source of Data, etc.																																																																																							
10 ADD BORE DRILLED TO 72.60 WELL DATA																																																																																							
Formation Log <table border="1"> <tr> <td>TOPSOIL</td> <td>BROWN</td> <td>SOFT</td> <td>0</td> <td>6M</td> </tr> <tr> <td>DELT LIGHT BROWN</td> <td>BROWN</td> <td>MED</td> <td>6M</td> <td>28.4</td> </tr> <tr> <td>LAY DRY POWDER</td> <td>LIGHT BLUE</td> <td>MED</td> <td>6M</td> <td>29.4</td> </tr> <tr> <td>shaly SILTSTONE</td> <td>Blue/Green</td> <td>MED</td> <td>28.4</td> <td>29.3</td> </tr> <tr> <td>AND STONE /DAMP?</td> <td>Yellow/Brn</td> <td>HARD</td> <td>29.3</td> <td>31.7</td> </tr> <tr> <td>ANDSTONE / SHALE</td> <td>Yellow/Brn</td> <td>SOFT</td> <td>31.7</td> <td>42.4</td> </tr> <tr> <td>WLE / MUDSTONE</td> <td>PURPLE</td> <td>MED</td> <td>42.4</td> <td>57.0</td> </tr> <tr> <td>WEST LATERAL POOL</td> <td>Break</td> <td>57.0</td> <td>—</td> <td>—</td> </tr> <tr> <td>ANDSTONE / FINE</td> <td>CHOCOLATE</td> <td>MED</td> <td>57.0</td> <td>58.1</td> </tr> <tr> <td>ANDSTONE / SILTY</td> <td>GREY</td> <td>MED</td> <td>58.1</td> <td>62.0</td> </tr> <tr> <td>ANDSTONE / lignite</td> <td>Grey/Green</td> <td>MED</td> <td>62.0</td> <td>65.0</td> </tr> <tr> <td>gravel / WATER</td> <td>—</td> <td>—</td> <td>65.0</td> <td>—</td> </tr> <tr> <td>ANDSTONE / yellow</td> <td>Yellow</td> <td>HARD</td> <td>65.0</td> <td>66.0</td> </tr> <tr> <td>and stone / Red clay</td> <td>Yellow</td> <td>HARD</td> <td>66.0</td> <td>70.0</td> </tr> <tr> <td>lay / SILTSTONE</td> <td>Grey</td> <td>MED</td> <td>70.0</td> <td>72.60</td> </tr> <tr> <td></td> <td></td> <td></td> <td>TD</td> <td>TD</td> </tr> </table>								TOPSOIL	BROWN	SOFT	0	6M	DELT LIGHT BROWN	BROWN	MED	6M	28.4	LAY DRY POWDER	LIGHT BLUE	MED	6M	29.4	shaly SILTSTONE	Blue/Green	MED	28.4	29.3	AND STONE /DAMP?	Yellow/Brn	HARD	29.3	31.7	ANDSTONE / SHALE	Yellow/Brn	SOFT	31.7	42.4	WLE / MUDSTONE	PURPLE	MED	42.4	57.0	WEST LATERAL POOL	Break	57.0	—	—	ANDSTONE / FINE	CHOCOLATE	MED	57.0	58.1	ANDSTONE / SILTY	GREY	MED	58.1	62.0	ANDSTONE / lignite	Grey/Green	MED	62.0	65.0	gravel / WATER	—	—	65.0	—	ANDSTONE / yellow	Yellow	HARD	65.0	66.0	and stone / Red clay	Yellow	HARD	66.0	70.0	lay / SILTSTONE	Grey	MED	70.0	72.60				TD	TD
TOPSOIL	BROWN	SOFT	0	6M																																																																																			
DELT LIGHT BROWN	BROWN	MED	6M	28.4																																																																																			
LAY DRY POWDER	LIGHT BLUE	MED	6M	29.4																																																																																			
shaly SILTSTONE	Blue/Green	MED	28.4	29.3																																																																																			
AND STONE /DAMP?	Yellow/Brn	HARD	29.3	31.7																																																																																			
ANDSTONE / SHALE	Yellow/Brn	SOFT	31.7	42.4																																																																																			
WLE / MUDSTONE	PURPLE	MED	42.4	57.0																																																																																			
WEST LATERAL POOL	Break	57.0	—	—																																																																																			
ANDSTONE / FINE	CHOCOLATE	MED	57.0	58.1																																																																																			
ANDSTONE / SILTY	GREY	MED	58.1	62.0																																																																																			
ANDSTONE / lignite	Grey/Green	MED	62.0	65.0																																																																																			
gravel / WATER	—	—	65.0	—																																																																																			
ANDSTONE / yellow	Yellow	HARD	65.0	66.0																																																																																			
and stone / Red clay	Yellow	HARD	66.0	70.0																																																																																			
lay / SILTSTONE	Grey	MED	70.0	72.60																																																																																			
			TD	TD																																																																																			
Intake Portion of Well Screen type SLOT or open hole from ft to ft Manufacturer BRIDGE Material PIPE dia. 115 x 125 MM Fittings 45 S/S CERTRAL Length Set between 0 M ft and 70 M ft Slot 10 MM FROM 0 M ft and ft Slot 10 MM FROM 70 M ft and ft Slot 10 MM FROM 0 M Method of installation Filter Pack CEM PAK Gradation 6MM Source CEM PAK Completion Rocky Bluffs Method of installation STRENU Completion Rocky Bluffs Volume used 53 M3 Depth to top of f.p. 40 M Grout Used? ✓ Yes ✓ No Volume used 300 KG ✓ Non Cement ✓ Solvent Method of installation Sherry Packed Depth: 0-6 M ft to ft from ft to ft Development Method 100 LFT SETTING Duration 48 hrs Dates 12-12-96 Send report after hrs NIL Chemicals used NIL Static Water Level 51-6 M ft below SL above grade Date measured 12-12-96 Pumping Water Level 52-6 M ft below SL above grade Date 15-12-96 After 2-4 hrs hrs pumping at 1500 GALS PER HR soft Specific Capacity 1500 GALS PER HR gpm/ft of drawdown at INSTANT hours Date 15-12-96 Pump LOWARA 17/12/96 Type 12 GSS2 M/LT Manufacturer LOWARA Model No. 12 GSS2 M/LT H.P. 2-7 KW Volts 415 Capacity 1500 GALS PER HR Depth of pump intake setting 65 M No. of stages 12 ✓ Oil ✓ Water lubrication Power source Material of drop pipe Galv. STEEL bowls shading impellers Bowl dia. Column pipe dia. 115 Length 12M Modifications NIL Well Head Completion ✓ Pitless adaptor ✓ Basement offset Distance above grade 40CM Nearest Sources of Possible Contamination SOIL Category 100M ft Direction South Type Sherry PIT Well disinfected upon completion? ✓ Yes ✓ No Geophysical Logs Run N/A																																																																																							
TRACTOR Name and Address Name of Driller J. S. EWIN - Holden State License Number Date well completed 18-12-96																																																																																							
Water Quality Sample taken? ✓ Yes ✓ No Where analyzed																																																																																							

Bore Back Ruled To 70m with Shingle pump installed.
 After 48 hrs of jetting B/H yield 1500 GALS PER HR.
 min. 1.0 L/L and Pumped clean for 2 hrs B/H YIELD 1500 PER HR

23/05/1997 09:04 01903874132

HYDROSERVE DRILLING

PAGE 01

Location of Well						Property owner's name and address		
County SUSSEX	Township Number N S	Range Number E W	Section No.	Fraction	W W W	MR OLIVER GRANT NEUSTEAD FARM CARTERS HEDGE HAND CROSS WEST SUSSEX TQ23SW 46		
Nearest Address and City or Town and Distance and Direction from Road Intersections WESTERN L.S SOUTHERN E.A. 302						TQ23/26		
Sketch map of well location						Well depth F.O.M. Datum point from which all measurements are taken Ground level		
						Method of Drilling <input type="checkbox"/> Cable tool <input type="checkbox"/> Hollow rod <input type="checkbox"/> Driven <input type="checkbox"/> Direct rotary <input type="checkbox"/> Air rotary <input type="checkbox"/> Dug <input type="checkbox"/> Reverse rotary <input type="checkbox"/> Jetted <input type="checkbox"/> Bucket auger <input type="checkbox"/> <input type="checkbox"/> Flight auger		
Addition Name Block Number 10240308 Lot Number						Use <input type="checkbox"/> Domestic <input type="checkbox"/> Public supply <input type="checkbox"/> Industrial <input type="checkbox"/> Irrigation <input type="checkbox"/> Municipal <input type="checkbox"/> Commercial <input type="checkbox"/> Test Well <input type="checkbox"/> Heating or cooling <input type="checkbox"/> Monitoring		
Casing Type <input type="checkbox"/> Steel <input type="checkbox"/> Threaded <input type="checkbox"/> Height above/below <input type="checkbox"/> Galv. <input type="checkbox"/> Welded <input type="checkbox"/> surface _____ <input type="checkbox"/> PVC <input type="checkbox"/> Solvent welded <input type="checkbox"/> Drive shoe? Yes _____ No _____ <input type="checkbox"/> SS <input type="checkbox"/> 6M STEEL <input type="checkbox"/> Wgt. _____ lb/ft <input type="checkbox"/> Sch. No. _____ <input type="checkbox"/> <input type="checkbox"/> 30M PVC <input type="checkbox"/> Wgt. _____ lb/ft <input type="checkbox"/> Sch. No. _____ <input type="checkbox"/> <input type="checkbox"/> ft <input type="checkbox"/> Wgt. _____ lb/ft <input type="checkbox"/> Sch. No. _____						Hole diameter 60MM to 100MM		
Intake Portion of Well Screen type SLOT Manufacturer BODIE Material PVC Fittings 4x S/S Central Set between 0M ft and 30M ft Slot 10M from 0M ft and ft Slot 10M ft and ft Slot						Dia. 115 x 115MM Length		
Method of installation Filter Pack CEM PAK Source 10MM Method of installation SLURRY Poured Volume used 33 M3 Depth to top of f.p. 40M						Gradation 6MM Composition Royal Blues		
Grout Used? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Volume used 300 KG <input type="checkbox"/> Non Cement <input type="checkbox"/> Epoxy Method of installation SLURRY Poured Depth from 0-6 M						ft to ft ft to ft		
Development Method AIR LIFT SETTING Dates 12-12-96 Chemicals used NIL						Duration 48 hrs Sand content after hrs NIL		
Static Water Level 51-6M ft below grade						Date measured 14-12-96		
Pumping Water Level 52-5M ft above grade						Date 15-12-96 After 2-4 hrs hrs pumping at 1500 GALS PER HR		
Specific Capacity 1500 GALS PER HR						Depth of pump intake setting 6M No. of stages 12 Oil Water lubrication Material of drop pipe 60MM STEEL bowls shafting impellers Bowl dia. Column pipe dia. 210MM Length 10M Modifications NIL		
Well Head Completion <input type="checkbox"/> Pitless adaptor <input type="checkbox"/> Basement offset Distance above grade 40CM						Nearest Sources of Possible Contamination 100M ft Direction South Type Slurry Pit		
Well disinfected upon completion? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						Geophysical Logs Run N/A		
Contractor Name and Address Name of Driller T. S. ELWIN-Holden State License Number						Water Quality Sample taken? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Where analyzed		
						Date well completed 18-12-96		

Bore Back Rilled To 70M with Shingle pump installed.
 After 48 hrs of jetting B/H yield 1500 GALS PER HR.
 Reinforced and Plumbec clean for 2ns B/H YIELD 1500 GALS PER HR.

Appendix B

Seismic Interpretation

A review of available seismic lines in the area has helped to confirm the nature of the faults, orientation of and thicknesses of geological strata within the vicinity of the Proposed Development site. The locations of the four seismic lines used are displayed in Plate 1. Plate 2 to Plate 4 present the three seismic lines of TWLD-90-15, TWLD-90-13 and TWLD-90-26 respectively with the relative location of the site indicated. Seismic line TWLD-90-21 has been used in assistance of unit interpretation and is presented in Plate 5.

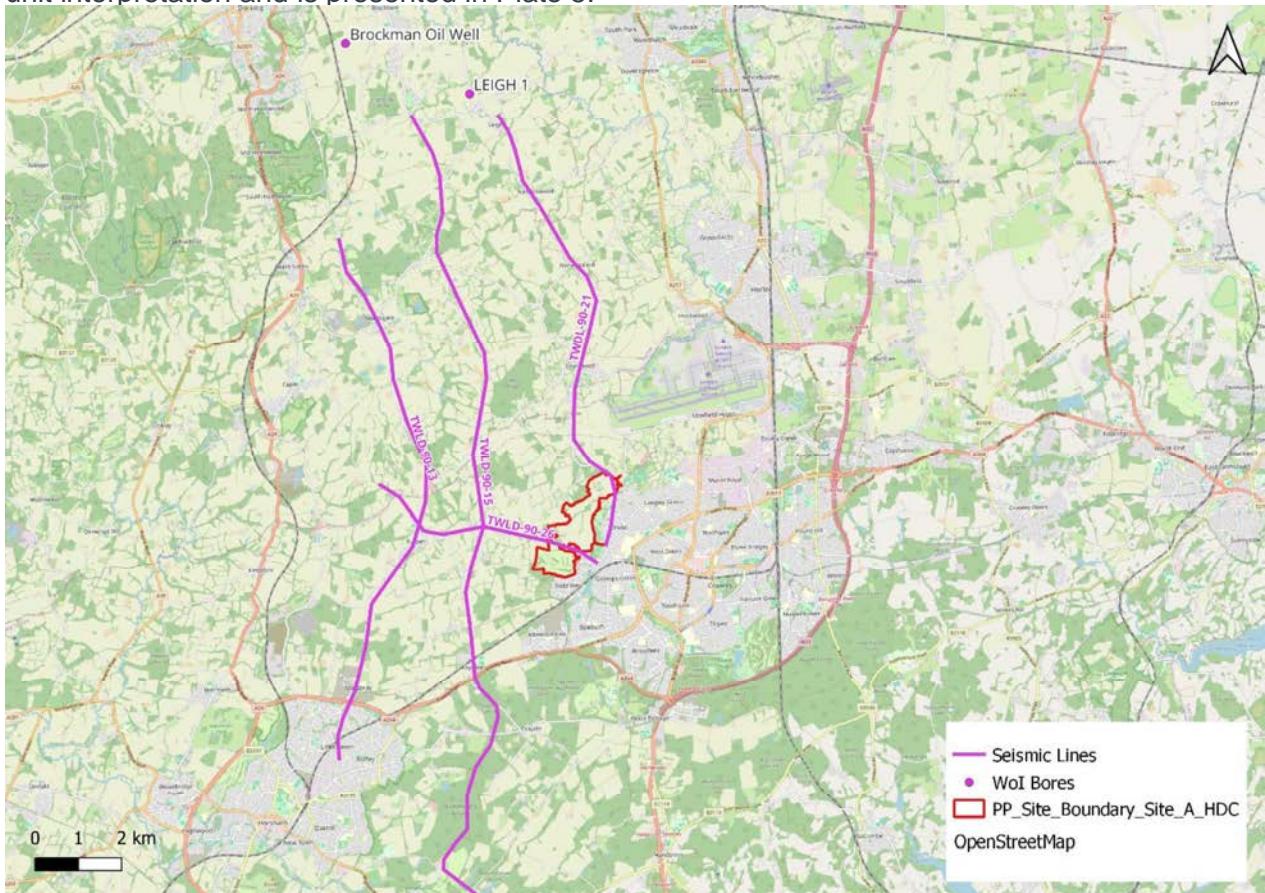


Plate 1 – Seismic Lines Locations and reference boreholes.

S

TWLD-90-15

N

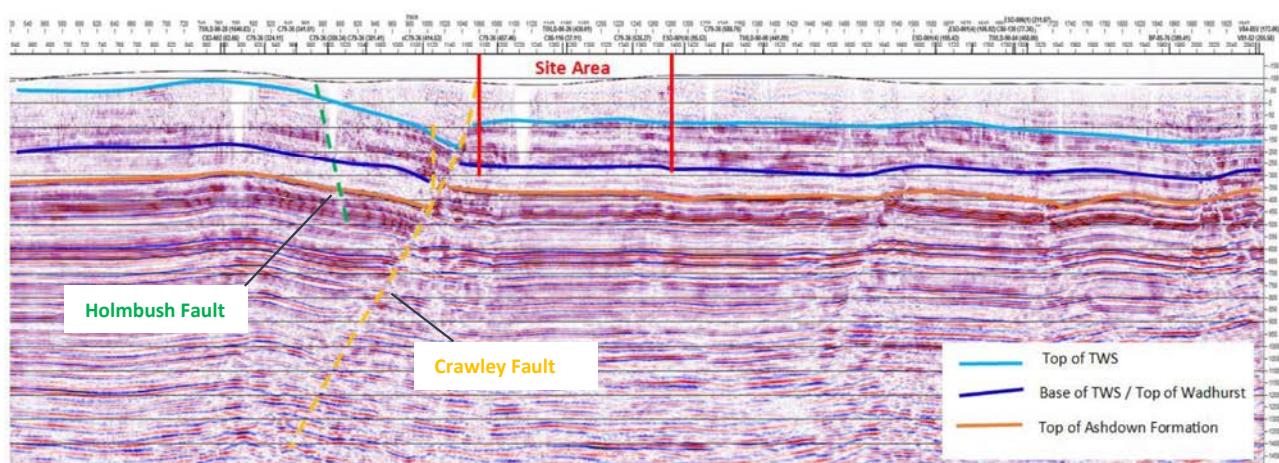


Plate 2 – South-North Seismic Line TWLD-90-15

S

TWLD-90-13

N

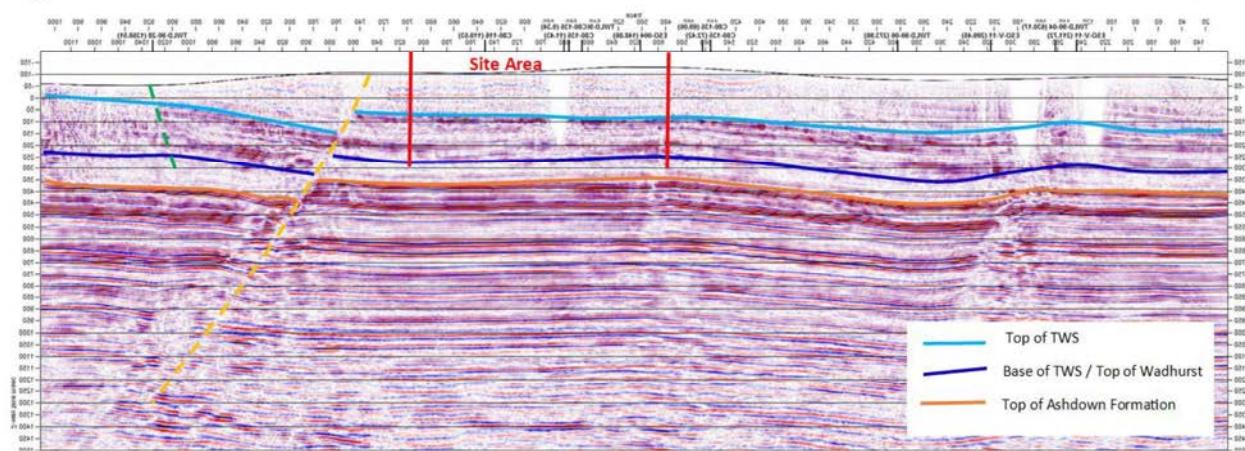


Plate 3 – South-North Seismic Line TWLD-90-13

W

TWLD-90-26

E



Plate 4 - West-East Seismic Line TWLD-90-26

From the figures above the location of the Crawley Fault (coloured yellow) can be clearly seen. It is confirmed by the seismic lines that the Crawley Fault passes through the southern section of the Site through to the surface. The throw (60-80 m) of the Crawley fault is also confirmed to be to the south by the seismic data indicates an increased throw of Plate 2. The Holmbush Fault is harder to depict from the seismic sections and it is therefore likely that the throw on this fault is minimal directly south of the Site location. Faults are confirmed as high angled normal faults (steeper than shown within the seismic sections because the horizontal scale is exaggerated compared to the vertical scale by 2.5 times).

To the west of the Site (Plate 3) the Crawley Fault appears further to the south and at a higher angle. The throw of the Crawley fault seems similar (60-80 m) between the two lines that are ~1.5 km apart.

The westerly dip of the beds forming the Weald Anticline can be clearly seen in Plate 4. Along the seismic line the strata have a 50 m change in elevation over 5.3 km confirming relative dip to the west. This is equal to a dip of 0.54 degrees. Note that this is unlikely to be the steepest angle of dip, as it is not fully orientated with the true dip direction. The BGS Map Sheet 302 shows a dip of between 2 and 3 degrees to the northwest for the outcropping UTWSM to the east of the site. Plate 4 indicates that there is a change in the depth of the interpreted TWSF from approximately 100 mgbl to the east of the Site, to approximately 120 mbgl to the west of the Site. The depth to the base of the TWSF is more consistent beneath the Site, however, at approximately 310 mbgl to the east and to the west of the Site. There is therefore an indication that possibly the total thickness of the Tunbridge Wells Sand is greater to the east of the Site than the west of the Site (approximately 210 m versus 190 m respectively).

The stratigraphic formation strata contacts displayed in the Plates above are interpreted from the seismic interpretation below for TWLD-90-21 (Plate 5) and the geological log from borehole Leigh 1 and Brockman Oil Well (shown below), which are at the northern end of seismic lines TWLD-90-15 (Plate 2) and TWLD-90-21 respectively. The boreholes are presented in Appendix A and confirm the unit boundaries/ depths interpreted for Plate 2 to Plate 5.

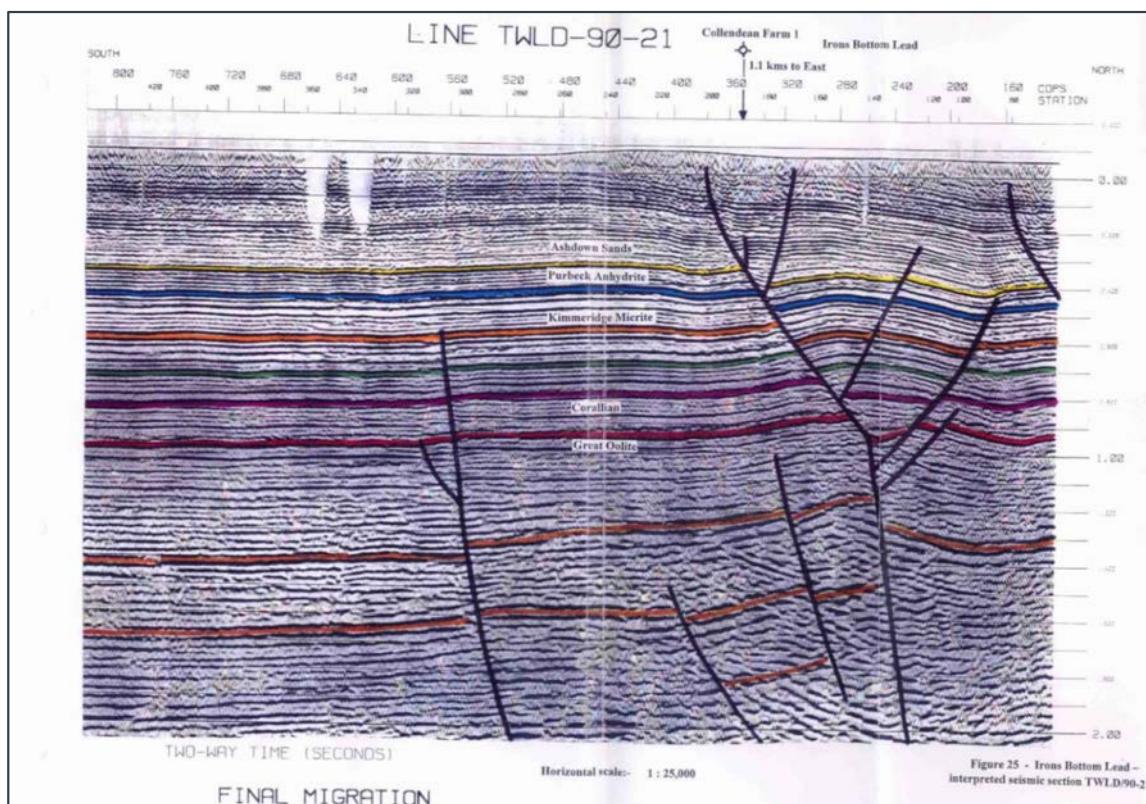


Plate 5 – Seismic interpretation of key lithological units in the Crawley area from TWLD-90-21

SUMMARISED WELL LOG

LR/24-3

(BROCKHAM)

518832-7 148653-8 (Surface)

Location 519115-8 148501-0 (Total depth)

PL 235

SCALE 1:10,000

CHRONO- STRATIGRAPHY	LITHO- STRATIGRAPHY	DEPTH DRILLED ft & m	GRAPHIC LOG	CORES SHOWS	Description	CASING	TESTS	ELECTRIC LOGS	Remarks
	WEALD CLAY					13 5/8"			SPUDED: 15th AUG. 1987 COMPLETED: 11th OCT. 1987 STATUS: SUSPENDED POTENTIAL OIL WELL
	233-4				MUDSTONE: light grey, very soft, silty.	30.5 m			GLE: 51-55m AOD RTE: 55-95m AOD
	U.TUN. WELLS SAND 320-6	250			SANDSTONE: light grey to light brown, very fine grained, silty, argillaceous.				320-6
	WADHURST CLAY 386-0	400			MUDSTONE: light grey, soft, silty.				GRINSTEAD CLAY 336-7
	ASHDOWN SAND 466-2				SANDSTONE: light grey, moderately hard, quartzose, calcareous cement.	9 5/8"			LR.TUN.WELLS SAND 347-4
	FAIRLIGHT CLAY	500			LIMESTONE: white to grey, moderately hard, microcrystalline.	52.9 m			
	523-8				ANHYDRITE: white, firm		DST 1		610-2
	PURBECK BEDS 610-2	2000			SANDSTONE: brown, quartzose, moderately hard, fine grained, calcareous cement.		DST 3		PURBECK ANHYDRITE 624-2
	624-2				MUDSTONE: dark grey green, firm, slightly micropyritic				
	PORTLAND BEDS 750-6				LIMESTONE: light beige brown, firm, very argillaceous				
	UPPER KIMMERIDGE 925-6				MUDSTONE: dark grey green, firm, angular break, micropyritic, calcareous.				
	LOWER KIMMERIDGE 1144-0	1000			SILTSTONE: light grey moderately hard, finely pyritic.				
	SST. UNIT 1160-3				SANDSTONE: white to light grey, hard, fine to medium grained occasionally coarse strong calcareous cement.				
	ARGILLACEOUS UNIT 1261-0	1250			LIMESTONE: white, hard, blocky, very oolitic.				
	LST. UNIT 1298-0				MUDSTONE: grey brown, moderately hard, silty, calcareous.	139.2 m			
	OXFORD CLAY 1408-3				SANDSTONE: white, very fine grained, strong calcareous cement.				
	1420-2				LIMESTONE: white, firm, chalky mudstone texture.				
	GREAT OOLITE GROUP 1499-1	1500			LIMESTONE: white, red, yellow, moderately hard, finely crystalline matrix, common ferruginous pellets.				
	INFERIOR OOLITE 1646-9	5000			SANDSTONE: white, quartzose, firm, fine grained, slightly calcareous.				
	UPPER SAND 1692-6				LIMESTONE: white to beige, firm, very finely crystalline				
	UPPER CLAYS 1737-4				MUDSTONE: brown grey, moderately hard, commonly sandy.				
	MID LIMESTONE 1794-0	6000			MUDSTONE: dark grey, brown, silty, slightly calcareous.				
	MID CLAYS 1845-6				LIMESTONE: white to light grey, firm, argillaceous.				
	LOWER CLAYS 2038-1	2000			LIMESTONE: white to light grey, finely crystalline, slightly sandy.				
	L.LIMESTONE 2096-4				T.D. 2176 m DD BRT (2072-2 m TVD SS)				
TRIAS	RHAETIC 2142-8	7000							
CARB/ DEV.		2250							
		8000							
		2500							

Author: A.HODGE

Date: NOV. 1987

Ref. LR/24-3/W28

Dr. No. E/SL/369

REGISTRATION NO.

Ein weiterer ist *Ascia* os. *Scutellaria*

۱۰۷

Signed: TCC

Date: 23/3/76 Page 1 of 1

Header record:

Author of
street.
D. C. M. P.

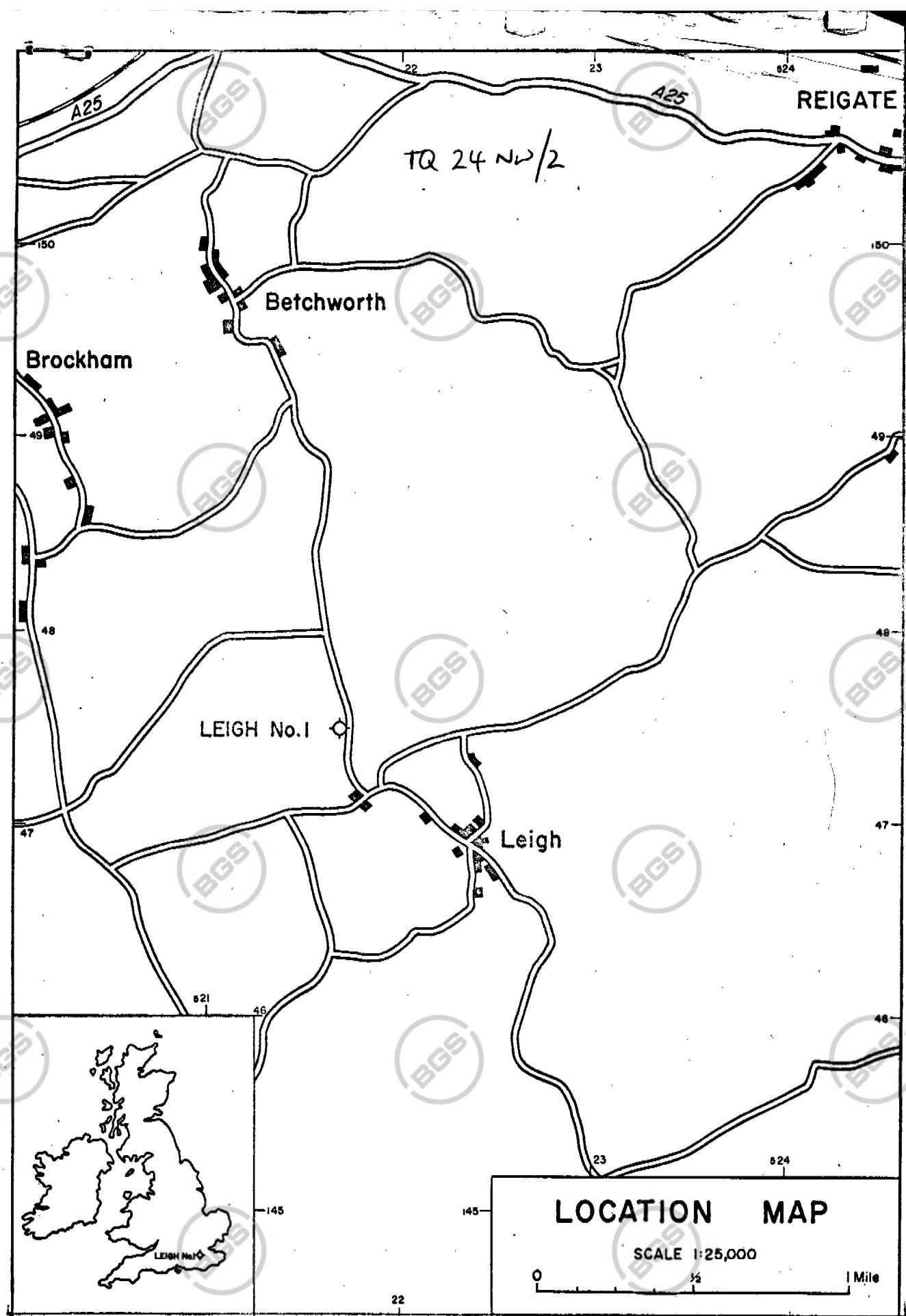
Year

Other stra. Impen/ chunis or dep. by the

Succession results :-

17

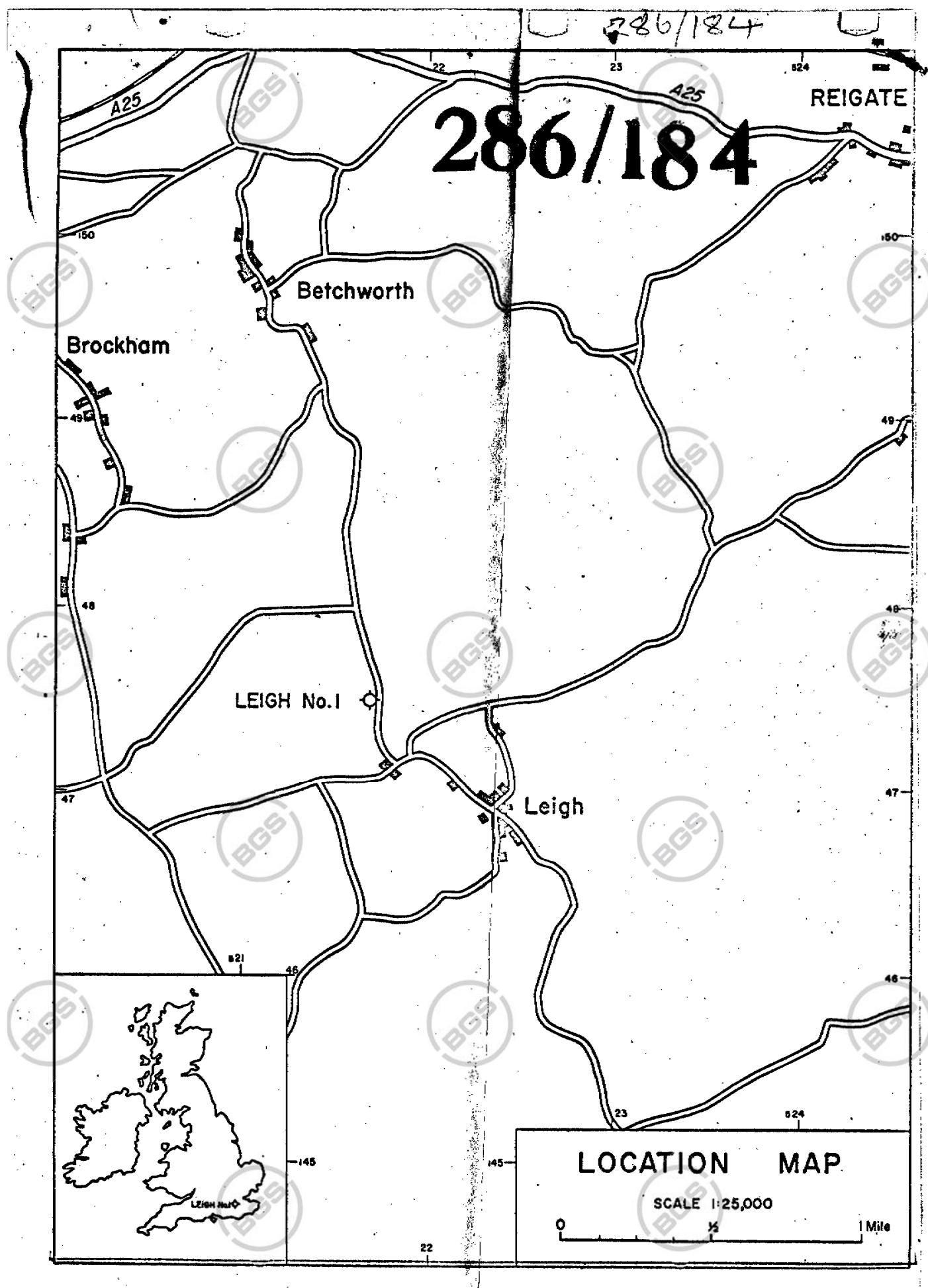
NO. CR. ROCK UNIT	STRAT.	CODE	DEPTH TO BASE	LITHOLOGY				STRATIGRAPHY (Clear text)
				LITHO- STRAT	CHRONO- STRAT	FT. IN.	METRES	
				LW	JVKZ	672.4	64.0.1	MD ST
2	P.B.	JVKZ	64.0.1	SD ST	MD ST			
3	P.L.	JP	74.6.8	LM ST				
4	K.C.	JD	90.1.9	MD ST				
5	END							

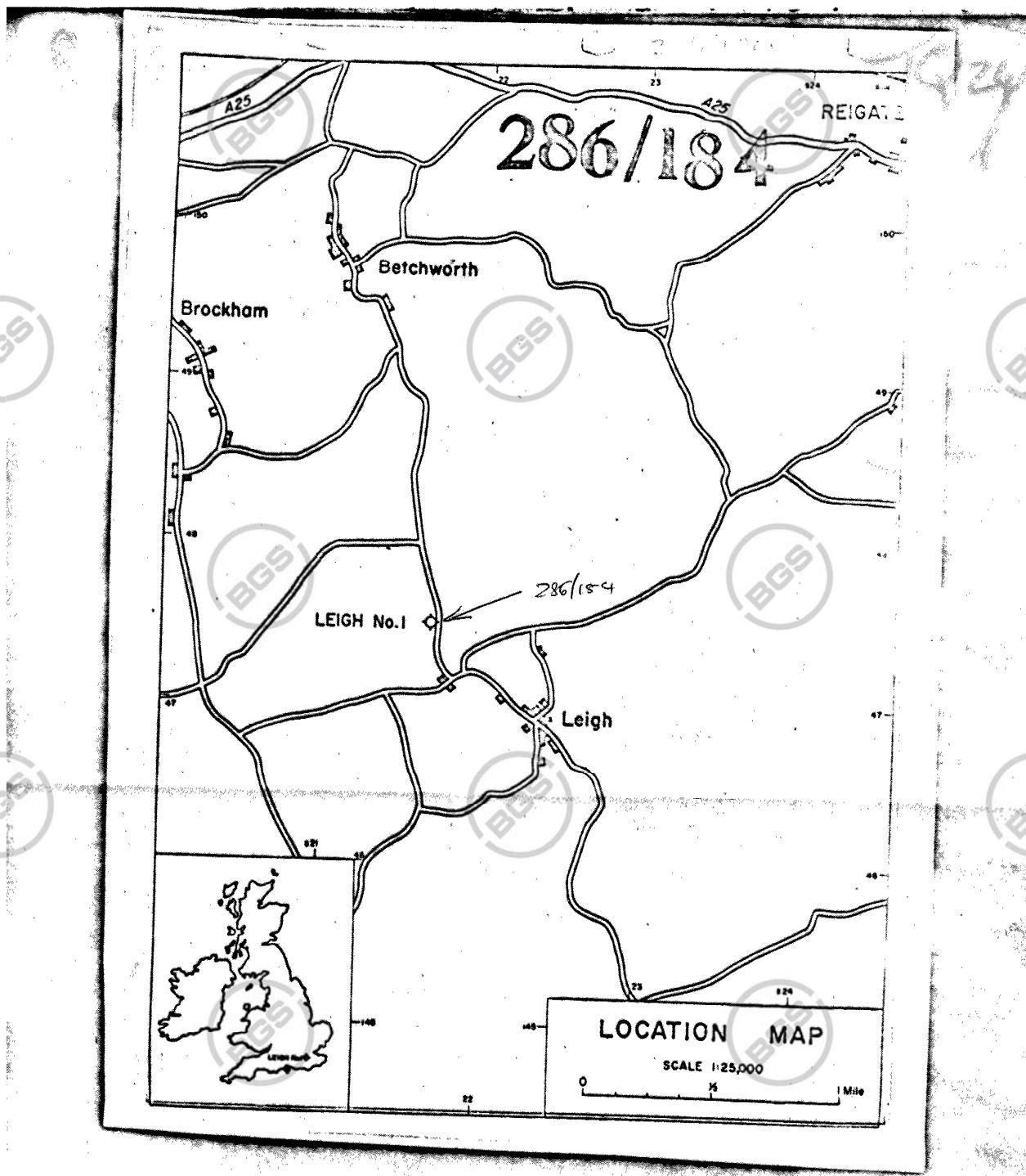

Dr. E.R. Shepherd-Thorne

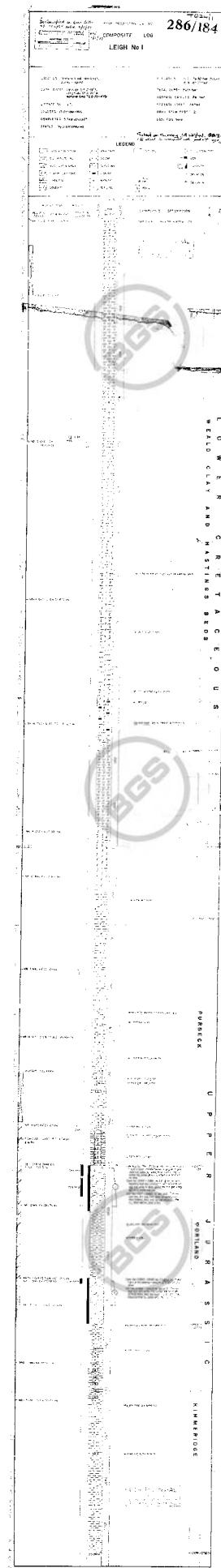
TQ 24 NW/2

Esso Leigh No. 1. B.H.

1. (a) Ref. your minute of 10th Feb. I would be pleased to have a copy of the composite log, at your convenience, as it may help the interp. of our other geophysical data for the area when we eventually get round to looking it.
(b) I understand that an attempt was made at one stage to get some geophys. logs in this borehole but that the first tool got stuck & the work was abandoned.
2. Did you, following our conversation some time ago, extract any seismic data from Esso? I note that they are now giving up their S.E. England Licence blocks & have been wondering whether to approach them for data before they store it away inaccessibly


W. Butterwell
3/3/67.




LOCATION MAP

SCALE 1:25,000

0 $\frac{1}{2}$ 1 Mile

286/184
TQ24/1

ESSO PRODUCTION U.K. INC.

COMPLETION REPORT

ESSO LEIGH NO. 1.

FEBRUARY 1967

CONTENTS

OPERATIONAL AND STATISTICAL DATA

	<u>Page</u>
Location	1
Elevation	1
Depth	1
Dates	1
Contractor	1
Drilling Time Analysis	2
Casing	3
Drill-Stem Tests	3
Materials Used	4
Operation Summary	5

GEOLOGICAL AND GEOPHYSICAL DATA

Purpose of Drilling the Well	10
Methods of Evaluation	10
Introduction	10
Samples	10
Cores	10
Mud Logging	10
Drill-Stem Tests	11
Electric Logging	11
Evaluation of Results	11
Stratigraphy	11
Oil and Gas Shows	12
Drill-Stem Tests	12
Reservoir Characteristics	12
Structure	13
Summary	13

CONTENTS - (continued)

LIST OF ILLUSTRATIONS AND ENCLOSURES

Figure

- 1. Abandonment Diagram
- 2. Index Map
- 3. Location Map

Page
7
8
9

Appendix

- A. Core Analysis Results
- B. Drill-Stem Test Report
- C. Mud Log
- D. Composite Logs

Packet

ESSO PRODUCTION U.K. INC.

WELL COMPLETION SUMMARY

OPERATIONAL AND STATISTICAL DATA

WELL: Lefgh No. 1

STATUS: Non producer
Plugged and Abandoned

LOCATION: Latitude: 51° 12' 38" North
Longitude: 0° 15' 44" West

National Grid: TQ 2171 4751

ELEVATION: Ground: 176.98 feet
Kelly Bushing: 187.23 feet

(Well measurements made from ground level)

DEPTH: Total Depth: 2959 feet
(Plugged from: 2006 feet to surface)

DATES: Move Started: 9th December, 1966
Spudded: 13th December, 1966
Reached T.D: 25th December, 1966
Completed: 5th February, 1967

(Plugged and Abandoned)

CONTRACT RIG: Deutsche Erdöl-Aktiengesellschaft

Ideco H-30 Rambler Rig, Semi Trailer Mounted

- 2

DRILLING TIME ANALYSIS

	<u>Hours</u>	<u>Percent</u>
Moving in and Rigging up	96	6.70
Drilling	198½	14.0
Coring	30½	2.18
Reaming	13	1.08
Casing and Cementing	29	2.06
Electric Surveys	0	0.0
Completing and Testing	23½	1.56
Repairs	894	63.40
Other Developments (Fishing)	48	3.42
Dismantling	42	3.00
Idle Time	36½	2.60
TOTAL ELAPSED TIME	1411	100.00

(58 days, 19 hours)

Footage Drilled	2959 feet
Footage Cored	148 feet
Total Footage per Net Day	5.1
Number of Cores Cut	3
Footage Recovered	74 feet
Percent Recovered	50 percent

- 3 -

CASING DESCRIPTION

<u>String</u>	<u>Hole Size (in)</u>	<u>Size (in)</u>	<u>Weight (1bs/ft)</u>	<u>Grade</u>	<u>Thread</u>	<u>Length (ft)</u>	<u>Depth (ft)</u>	<u>Cementation</u>
Conductor	-	9-5/8	36	H-40	(S)	16	8	Cemented by hand approx. 4' below bottom of casing.
Surface	8 ³ / ₈	7	17	H-40	(S)	486.5	488	110 sx. A.P.I. Class "B" Cement. Returns to surface.

DRILL-STEM TESTS

<u>No.</u>	<u>From</u>	<u>To</u>	<u>Water Cushion</u>	<u>Results</u>
1	2107'	2188'	None	Weak blow increasing to strong steady blow. Would not burn. Recovered 1100' of salt water 45000 Chl., methane 3500, ethane 300 ppm
2	2356'	2409'	None	Weak blow increasing to strong blow. Would not burn. Recovered 2200' of salt water 58,000 ppm Chl., 1200 ppm methane.

- 4 -

MATERIALS USED

Mud Additives and Chemicals:

Bentonite	150 sx.
Weight Material	300 sx.
CMC	10 sx.
Calgon	22 sx.

Cements:

Construction	345 sx.
Oil Well Class "B"	110 sx.

Rock Bits:

<u>Size</u>	<u>Make</u>	<u>Type</u>	<u>No. Used</u>
8 3/4"	Hughes	OSC-3	1
6 1/2"	Security	ML4	3
6 1/4"	Hughes	OSC-1G	6
6 1/4"	Hughes	OSC	3
6 1/4"	Hughes	OWV	1
6 1/4"	Hughes	WR7	1

Core Bits:

<u>Size</u>	<u>Make</u>	<u>Type</u>	<u>No. Used</u>	<u>Footage</u>
6-3/16"	Christensen	Diamond	1*	148

* Only 15% used.

- 5 -

OPERATIONAL SUMMARY

The well was drilled by Deutsche Erdöl-Aktiengesellschaft of Wietze, Germany using an Ideco H-30 Ramble Rig, semi-trailer mounted. The draw works of this rig was powered by GM Twin 6-71 diesel engines under a 95 foot mast on an 8 foot substructure. The rig drilling mud pump was a North and Company 7 $\frac{1}{2}$ " x 16" powered by a Mercedes-Benz 300-h.p. diesel engine.

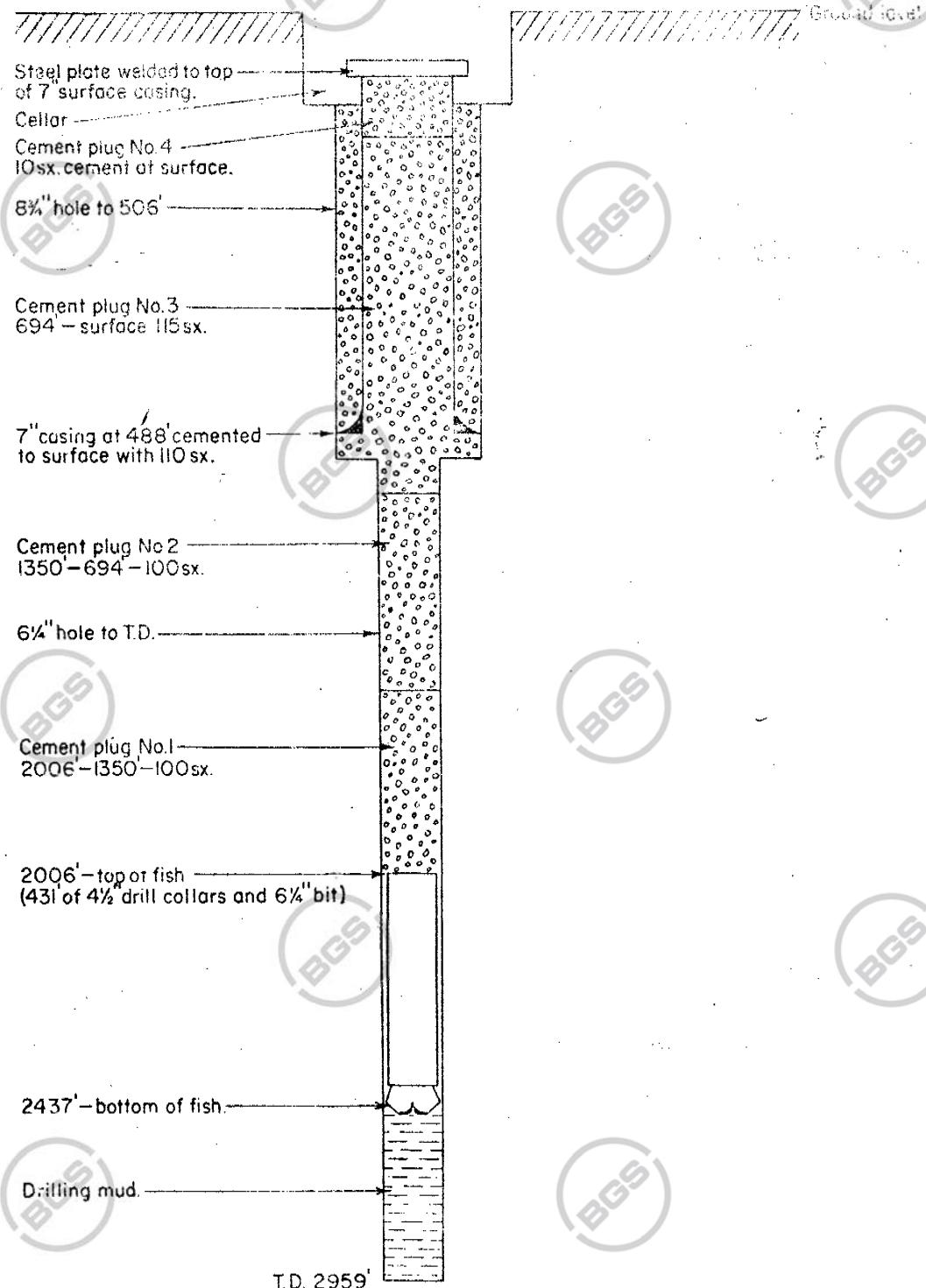
The rig was moved to the site from Tatsfield. The delay in the move was due to the inability to get police escort. The well was spudded in on 13th December, 1966 at 08.00 hrs.

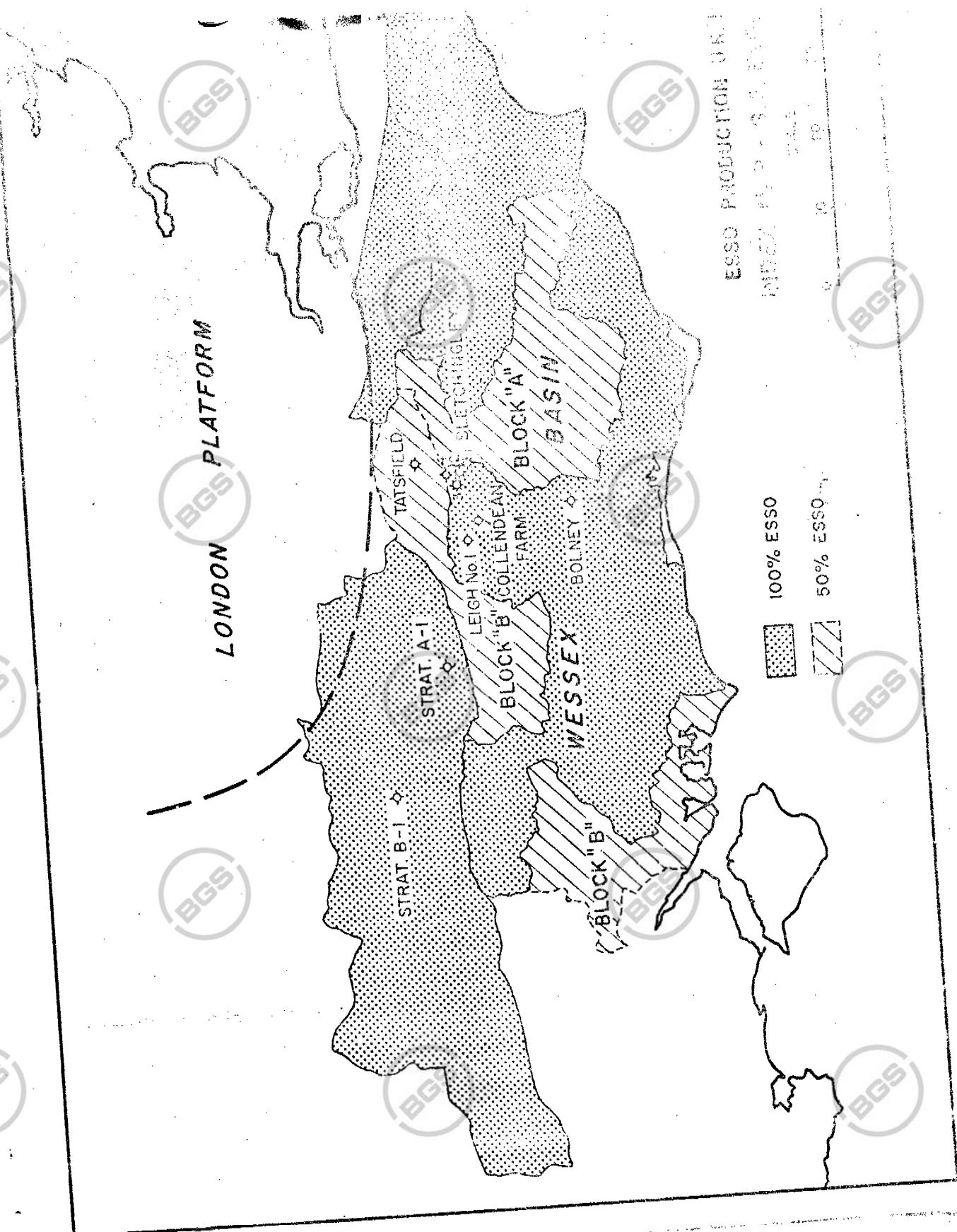
An 8 $\frac{3}{4}$ " hole was drilled to 506 feet and 7 inch surface casing run to 488 feet and cemented to the surface using a Halliburton cementing truck.

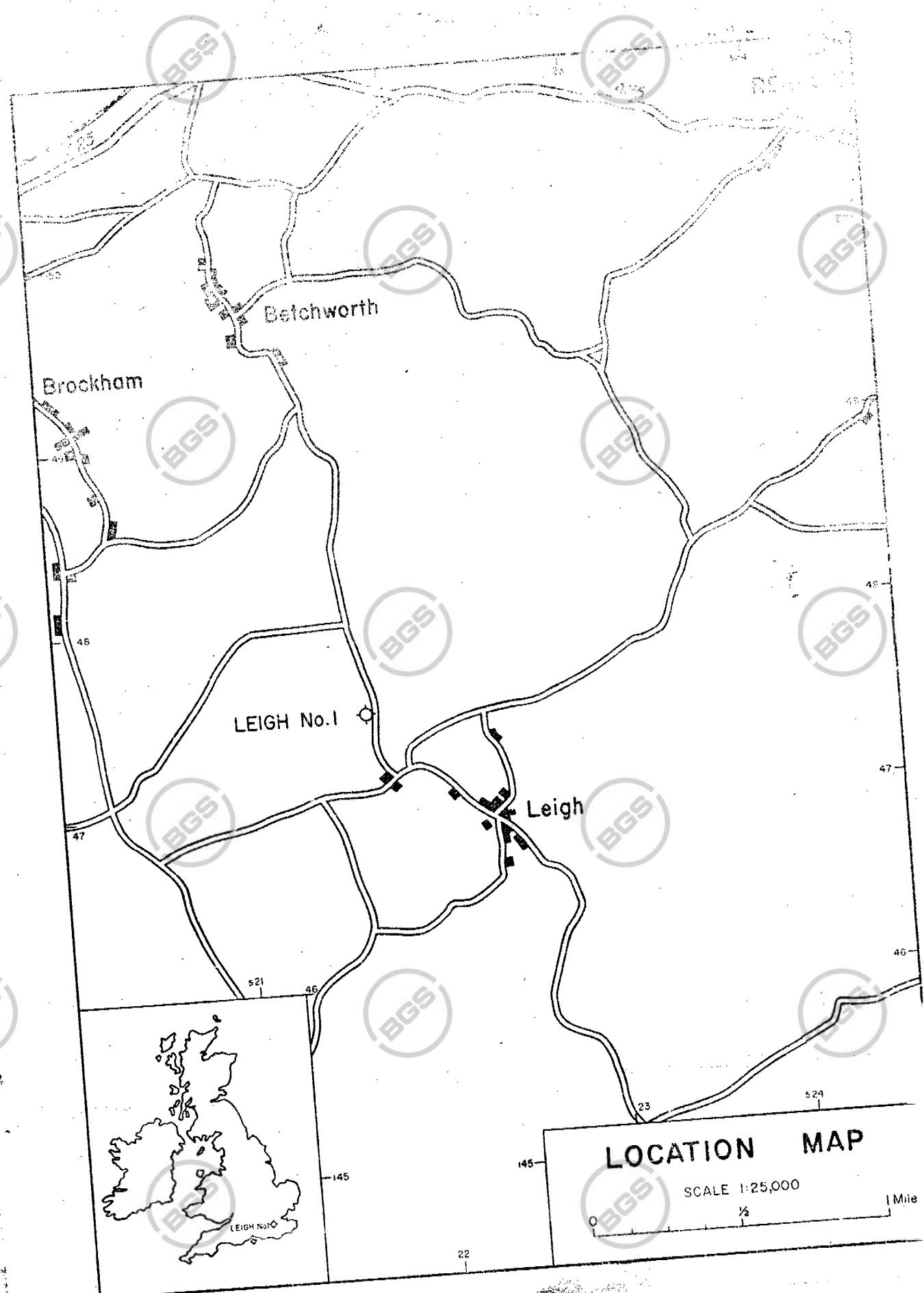
The hole size was reduced to 6 $\frac{1}{2}$ inches and drilled from 506 feet to 2959 feet with 3 $\frac{1}{2}$ " 1P drill pipe and 20-4 $\frac{1}{2}$ inch O.D. drill collars. There were three cores taken and two drill-stem tests run.

When pulling out of hole on 25th December, 1966 at 09.00 hrs. to change bits the pipe stuck at 2437 feet (T.D. 2959 feet). The drill pipe could not be moved up or down. When breaking connections with tongs and rotary table in order to connect the kelly and attempt to establish circulation to free the drilling bit the rotary table turned to the left due to the torque resulting from the stuck bit. The drilling string backed off at 2006 feet leaving 431 feet of drill collars and the bit in the hole (2006 feet - 2437 feet). It was possible to screw into the fish and back off, however circulation could not be established. A pull of 80 TONS would not release the stuck drill collars. Diesel oil was spotted through the fish and jars run, but with no success. Lost circulation material was mixed with the drilling fluid but returns could not be obtained.

On 27th December, 09.00 hrs. the driller pulled at D.E.A. request approximately 78 TONS to try again to free the fish. The top part of the mast buckled and from this date till 2nd February at 08.00 hrs. the operation was suspended awaiting the repair of the mast. The drill pipe was backed off from the fish by hand and jacked up manually 1 foot above the fish. Drilling fluid circulation was established and maintained for five hours a day during the period awaiting on the repair of the mast.


The mast was returned to the site on 1st February, 1967 at 10.00 hrs, and rigging up commenced. On 2nd February, 1967 at 19.30 hrs. when attempting to pull out the 2006 feet of drill pipe prior to plugging and abandoning, the well became active resulting in a partial blow-out. A Shaffer Drill Pipe Safety valve was immediately installed on the drill pipe and the blow-out preventer closed which controlled the well. The result was that approximately 30 bbls. of gas-cut drilling fluid and water were blown out of the well. A mix of new drilling mud and weight material was prepared and pumped into the well through the drill pipe with a Halliburton Cementing Unit. The hole


was reamed and cleaned out to the top of the fish (2006 feet) with a 6 $\frac{1}{4}$ " bit prior to plugging and cementing. The well was plugged with 325 cu. ft. of cement and abandoned 4th February, 1967. The abandonment diagram is included in this report.


Subsequent to the mast being returned to the well site after repair, D.E.A. had only a partial crew (8 people) and the rig did not have adequate lighting equipment to enable working after dark.

LEIGH No.1 ABANDONMENT DIAGRAM

NOT TO SCALE

GEOLOGICAL AND GEOGRAPHICAL DATA

PURPOSE OF DRILLING THE WELL

Leigh No. 1 was drilled to test the Portland and Corallian reservoirs on the Southeast Dorking structure, six miles west of the gas discovery at Bletchingley. This was a budgeted 1966 wildcat, following the 1966 seismic program.

METHODS OF EVALUATION

Introduction

The well was logged by P.E. Blau and J.C. Parmenter. The completion report was written by P.E. Blau (well-site geologist) and J.S. Hubley (consultant well engineer).

Samples

Samples were collected at three-meter or nine-meter intervals, lagged to corrected depth in feet, and screened at 4 mm. (5 mesh) and 0.177 mm. (80 mesh) for geological examination. Three cuts were made for company storage and trade.

Sample quality was satisfactory, but some of the cuttings are contaminated by lost circulation material left in the mud tanks after the last well.

Cores

Three cores were cut to evaluate porosity in the Portland sandstones. Total footage cored was 148 feet and total recovery was 74 feet (50%). The lost footage was caused by the friability of the sandstone and failure of the core catcher while cutting the last core.

Core samples were analyzed by Core Laboratories, Inc., for porosity, permeability, and fluid saturation, and results of the analyses are enclosed as Appendix A. The cores have been delivered to the Geological Survey in London for slabbing; one half will be retained by the Survey and one half shipped to Esso Production Research in Bordeaux for storage and possible later study.

Mud Logging

Mud logging services provided under contract by Baroid with a one-man unit included continuous gas logging of the drilling mud and a graphic record of the drilling rate. The operator also prepared a running well log with graphic presentation of drilling rate, lithology, and mud gas analysis; this log is included as Appendix C. The operator was at the well eight hours a day and on call in emergencies, and the Baroid unit was used by Esso personnel for all geological work.

Mud Logging - (continued)

Performance by the mud-logging contractor was adequate. Previous wells have been logged by Exploration Logging Robertson Limited but they were unable to supply equipment for Lough No. 1. Baroid received very bad treatment and the only equipment available was a skid unit designed for continental land use and is not suitable for one-man operation. The Baroid operator was from the United States and was fully competent, but lacked proper equipment for complete logging of the well.

Drill-Stem Tests

Two open-hole drill-stem tests were run by Halliburton Limited in the Portland. Double packers were used in both tests, and flow and shut-in times were determined at the well site to obtain maximum information. All tests were successful (see Appendix B).

Electric Logging

No electric logs were run. Both porous zones in the Portland were evaluated with cores and drill-stem tests before being blocked by the fish, and no other zones of interest were drilled.

EVALUATION OF RESULTS

Stratigraphy

No electric logs were run. Formation tops are based on lithology and drilling rate.

Lower Cretaceous. Surface (+177') to 1550' (-1373'), thickness 1550'.

Weald Clay and Hastings Beds. Surface (+177') to 1550' (-1373'), thickness 1550'.

Claystone, gray and light olive gray, tan, with siltstone, yellow-gray, surface to 780'; with interbedded sandstone, tan, very fine to coarse grained, very poorly sorted, subangular to subrounded, 780-1060'; also with interbedded lignite, 1070-1140'; claystone and mudstone, gray, some skeletal, with interbedded sandstone and siltstone, 1140-1550'.

Upper Jurassic. 1550' (-1373') to 2959' (-2782'), thickness 1409'.

Purbeck. 1550' (-1373') to 2100' (-1923'), thickness 550'.

Mudstone, some shaly, and claystone, gray; with interbedded siltstone, brown-gray; and detrital-micritic, skeletal detrital, and skeletal limestone, gray to tan; 1550-2025'. Micritic limestone, light gray, with interbedded anhydrite, white to light gray, and grading to dolomitic limestone at base, 2025-2100'.

Stratigraphy - (continued)

Portland. 2100' (-1923') to 2450' (-2273'), thickness 350'.

Sandstone, medium gray, very fine to fine grained moderately sorted, subangular to subrounded, moderately calcareous, friable, some muddy, some glauconitic, grading to dolomitic glauconitic sandstone and glauconitic sandy dolomite, good intergranular porosity, minor gas show while coring and fetid odor in core 2100-2200'; white, gray, some skeletal, some micritic, with interbedded sandstone as above, 2200-2350'; glauconitic sandstone, light gray, fine grained, well sorted, subangular to subrounded, friable, good intergranular porosity, no show, 2350-2450'.

Kimmeridge. 2450' (-2273') to 2959' (-2782'), thickness 509'.

Shaly mudstone, gray, some skeletal, some micritic, with interbedded micritic limestone, light gray.

Oil and Gas Shows

No significant gas show occurred while drilling the well. Details of minor shows in the Purbeck and Portland are given on the Mud Log enclosed as Appendix C. The small blow-out during abandonment of the well probably resulted from gas accumulated in a thin coquina at 1790 feet in the Purbeck.

Drill-Stem Tests

Salt water was recovered from open-hole tests in both zones of the Portland. Detailed reports on the drill-stem tests are included as Appendix B.

Reservoir Characteristics

Reservoir data is based on core analysis and correlation with Collendean Farm No. 1, as no electric logs were run at Leigh No. 1.

Hastings Beds (Lower Cretaceous)

Sandstone, very fine to coarse grained, in the cuttings from 780' to 1060' probably represents the Lower Tunbridge Wells and Ashdown Sands. These intervals have good porosity and produced fresh water on drill-stem test at Collendean Farm No. 1.

Purbeck (Upper Jurassic)

Skeletal limestone (coquina), with some porosity 1785-1792' and minor show (gas while drilling and minor blow-out during abandonment). Not recognized in cuttings and lithology is inferred from a similar interval at Collendean Farm No. 1. A thin sandstone occurs in this zone at Bletchingley along the northern edge of the basin.

- 13 -

Reservoir Characteristics - (continued)

Portland (Upper Jurassic)

Glauconitic sandstone, fine grained, with good intergranular porosity and good permeability 2112-2137' and minor show (some gas in mud while coring, fetid odor in core). Core analysis measured average porosity of 22.3% (range 15.9 to 28.1%) and average permeability 62.5 millidarcies (range 4.5 to 333.0) with average oil saturation 2.3% (range 0.0 to 3.2%). The rest of the core was porous but impermeable and had somewhat higher oil saturation; average porosity overall is 15.4% with average oil saturation 9.3%. The interval produced salt water on test. Net 100' porous sandstone with average 15% porosity, including net 25' porous and permeable with average 22% porosity.

Glauconitic sandstone, fine grained, with good intergranular porosity and good permeability but no show. Core analysis of representative samples measured average porosity 27.4% (range 25.6 to 29.2%) and average permeability 536 millidarcies (range 248 to 825) with oil saturation nil. Salt water was recovered on test. Very little core was recovered, but permeable sandstone with average 25% porosity.

Structure

Leigh No. 1 is located on a faulted anticlinal closure mapped by conventional reflection seismic and 1966 "Vibroseis" work. The closure is bounded by down-to-the-basin (south) faults on trend with and similar to those at Bletchingley. Seismic mapping indicates about 200 feet of closure covering 1560 acres.

Summary

Leigh No. 1 evaluated the prospective Portland sand reservoirs; good porosity was encountered in both zones, but drill-stem tests recovered only salt water. Due to the costs and risks involved in deviating the well, the relatively thin secondary objectives in the Corallian were not penetrated.

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company Esso Production U.K. Inc. Formation URCA 23
 Well Leigh No. 1. Core Type 1, 2 & 3. Date Report 21 Sept. 1971
 Field Wildcat Drilling Fluid Analysts R.F.S. - C.G.
 County Surrey State England Elev. Location

Lithological Abbreviations

BAND-ED GNALE-SII LIME-LM	DOLOMITE-DOL CHERT-CH GYPSUM-GYP	ANHYDRITE-ANHY CONGLOMERATE-CONG FOSSILIFEROUS-FOSS	SANDY-SHY SHALY-SHY LIMY-LMY	FINE-FN MEDIUM-MED COARSE-CSE	CRYSTALLINE-XLN GRAIN-GRN GRANULAR-GRNG	BROWN-BRN GRAY-GY YUGGY-VCY	FRAC-TURED-FRAC LAMINATI-ON-LAM STYLOLIZ-IC-IC	SLIGHT- VARY-V MEDIUM-M
---------------------------------	--	---	------------------------------------	-------------------------------------	---	-----------------------------------	--	-------------------------------

SAMPLE NUMBER	DEPTH FEET	PERMEABILITY MILLIDARCY'S Air	POROSITY PER CENT	RESIDUAL SATURATION PER CENT PORE		SAMPLE DESCRIPTION AND REMARKS
				OIL	TOTAL WATER	
CORE NO. 1.						
2099	0.0	9.6	17.4	78.4	Sandy lmst, fn. grn, foss, glauc.	0.0
2101.5	0.0	7.7	13.9	74.8	a.a.	0.0
2104	0.0	7.9	13.5	76.2	a.a.	0.0
2106.5	0.0	5.4	15.9	83.2	a.a., shly, foss.	0.0
2109	0.0	15.1	10.8	67.6	SS, v. fn. grn., v calc, glauc, foss.	0.0
2111.5	0.0	16.4	0.0	82.5	a.a.	0.0
2114	16.0	23.2	2.4	76.6	Sandy lmst, a.a.	13.0
2116.5	26.0	23.4	3.2	82.0	SS, fn. grn, v calc, glauc, occ. foss. frags.	21.0
2119	9.7	16.5	0.0	76.1	a.a.	7.5
2121.5	4.5	18.4	3.2	69.5	a.a.	3.3.

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitability of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC.

Petroleum Research Engineering

DALLAS, TEXAS

File No. 29

Well No. 1

CORE ANALYSIS RESULTS

SAMPLE NUMBER	DEPTH FEET	PERMEABILITY MILLIDARCY'S Air	POROSITY PER CENT	RESIDUAL SATURATION PER CENT FINE		SAMPLE DESCRIPTION AND REMARKS	Liquids
				OIL	TOTAL WATER		
CORE NO. 2.							
2129	55.0	26.1	2.8	78.8	a.a.		47.0
2131.5	333	28.1	Gas Expansion	a.a., fn-med, locally cemented.		303	
2134	14.0	26.6	2.1	81.7	a.a., fn-med.		11.0
2136.5	42.0	15.9	Gas Expansion	a.a.			35.0
2139	0.0	10.1	0.0	71.8	a.a.		0.0
2141.5	0.0	24.2	Gas Expansion	a.a.			0.0
2144	0.0	23.3	2.4	84.2	a.a.		0.0
2146.5	0.0	3.4	Gas Expansion	a.a., shly inclusions.			0.0
2149	0.0	6.6	15.2	72.7	a.a.		0.0
2151.5	0.0	14.8	Gas Expansion	a.a.			0.0
2154	0.0	18.6	5.4	82.8	SS/sh, calc, glauc.		0.0
2156.5	0.0	15.0	Gas Expansion	a.a.			0.0
2159	0.0	13.7	11.8	79.0	a.a.		0.0
2161.5	0.0	5.9	Gas Expansion	a.a.			0.0
2164	0.0	8.6	7.8	77.6	Lmst finely Xline vugular.		0.0
2166.5	654	24.6	Gas Expansion	SS fn-med grn, calc, glauc.			624

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitability of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC.

Petroleum Research Laboratory

DALLAS, TEXAS

File No. 29
Well No. 1

Page No. 3

CORE ANALYSIS RESULTS

SAMPLE NUMBER	DEPTH FEET	PERMEABILITY MICRODARCY	POROSITY PER CENT	RESIDUAL SATURATION PER CENT POROSITY		SAMPLE DESCRIPTION AND REMARKS
				OIL	TOTAL WATER	
CORE NO. 3						
A	248	25.6	0.0	80.7	a.a.	220
B	825	29.2	0.0	79.3	a.a.	785
C	0.0	2.1	Gas Expansion	Lmst-sandy lmt.		0.0

TQ24/1

ESSO PETROLEUM CO.		DRILL STICK TEST REPORT	
WELL NAME AND LOCATION		REASONS FOR TEST	
Leigh No. 1. Tapner's Road, Nr. Leigh, Surrey, England.		Porosity in Portlandian Marlstone	
FORMATION TESTED Portland (Upper Jurassic).			
D.S.T. NO.	TWO	DATE 23 December 1966 SERVICE CO. Halliburton Limited.	
TOTAL DEPTH	2409'	HOLE SIZE	6 1/8"
TESTED INTERVAL	2356-2409'	WATER CUSHION	None
TOTAL TIME OPEN	17 min.	Double	PACKERS
First INITIAL FLOW PRESSURE	886.1 psi		2350' / 2356'
Second FINAL FLOW PRESSURE	1075.3		08:05 / 08:49
First FINAL FLOW PRESSURE	1076.9		08:19 / 08:52
Second SHUT-IN PRESSURE	1076.3		
Initial SHUT-IN PRESSURE	1076.9		SHUT-IN TIME
Final HYDROSTATIC MUD PRESSURE	1076.3		60 min.
Initial HYDROSTATIC MUD PRESSURE	1305.3	CHOKES BH	5/8" TH 1"
Final HYDROSTATIC MUD PRESSURE	1281.5		
RECOVERY: 60' mud and 2132' GCSW (black, fetid), maximum 58,000 ppm C1, 1200 ppm methane, 250 ppm ethane.			

GENERAL DISCUSSION:

T.O. 14 min. with very strong blow.

T.C. 30 min.

T.O. 3 min. with very weak blow, dead after 2 min.

T.C. 60 min.

Pressures from 3000-lb. bomb, 12-hr. clock, at 1904'.

Shut-in pressures stabilized.

Salinity and HC vapor (in ppm):

2192' above DCIP valve	5,000 C1	25 C1
962' above DCIP valve	53,000	25
8' above DCIP valve	58,000	1200 250 C2

TEST WITNESSED
AND REPORTED BY: P.E. Blau.

TQ 24/1

Appendix B - 2

ESSO PETROLEUM CO.		DRILL STEM TEST REPORT	
WELL NAME AND LOCATION Leigh No. 1 Tapner's Road, Nr. Leigh, Surrey, England.		REASONS FOR TEST Porosity in Portland sandstone.	
FORMATION TESTED Portland (Upper Jurassic)			
D.S.T. NO. One	DATE 21 December 1966		SERVICE CO. Halliburton Limited.
TOTAL DEPTH	2188'	HOLE SIZE	6 1/4"
TESTED INTERVAL	2107-2188'	WATER CUSHION	None
TOTAL TIME OPEN	56 min.	Double PACKERS @	2101'/2107'
First INITIAL FLOW PRESSURE	83.6 psi	TIME OPENED	17:56/18:42
Second FINAL FLOW PRESSURE	217.9	TIME CLOSED	18:12/19:12
Initial SHUT-IN PRESSURE	232.0	SHUT-IN TIME	30 min.
Final HYDROSTATIC MUD PRESSURE	393.6	CHOKES BH $\frac{3}{4}$ " TH 1"	
Initial	939.7		
Final	916.1		
Initial	1146.7		
Final	1134.8		
RECOVERY: 1115' GCSW, maximum 45,000 ppm Cl, 3500 ppm methane, 300 ppm ethane.			

GENERAL DISCUSSION:

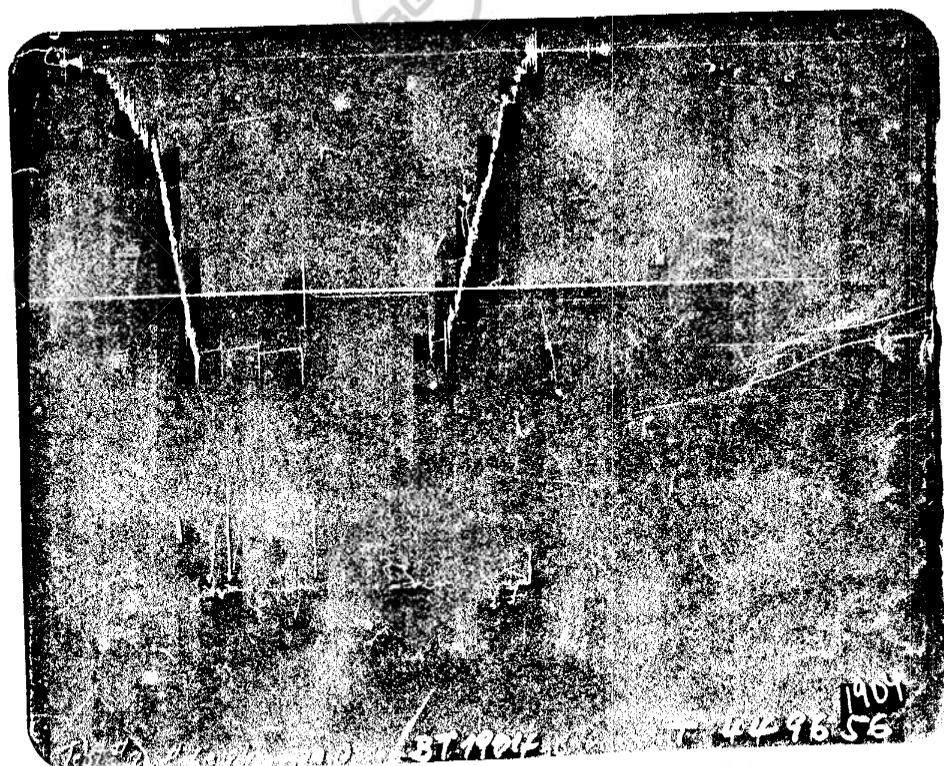
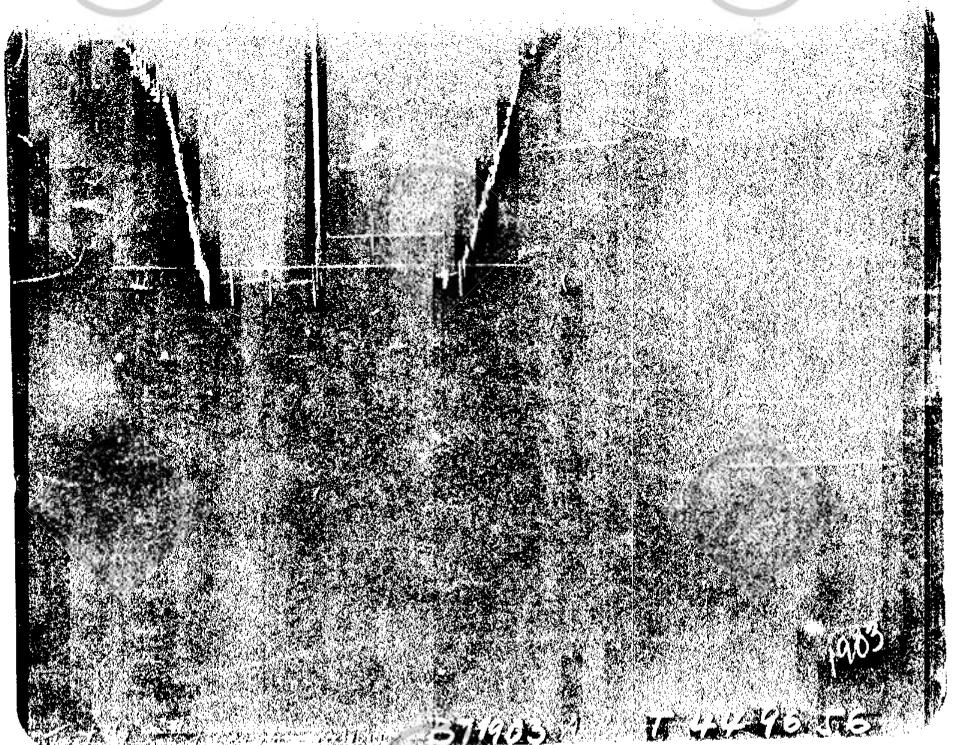
T.O. 16 min. with strong steady blow.

T.C. 30 min.

T.O. 30 min. with strong steady blow.

T.C. 30 min.

Pressures from 3000-lb. bomb, 12-hr. clock, at 2185'.



Shut-in pressures still building.

Salinity and HC vapor (in ppm):

1115' above DCIP valve	18,000	Cl	1600	C ₁	100	C ₂
695' above DCIP valve	41,000		3500		300	
8' above DCIP valve	45,000		2300		300	

TEST WITNESSED
AND REPORTED BY:

P.E. Blau.

Company ESSO

Date 23.12.66

	Time	Time	
Initial Hydro Mud Pressure	—	1305.3	
Initial Flow	—	886.1	
Final Flow	14	1075.3	
Initial Closed In Pressure	30	1076.9	
Initial Flow	—	1076.9	Bohrung 1 Test No. 1
Final Flow	3	1076.9	Bohrung 1 Test No. 2
Final Closed In Pressure	60	1076.9	BT No. 1904 Teufe 2406'
Final Hydro Mud Pressure	—	1281.5	12 Std. Uhr No. 125°F -°C
1st Flow Pressure	Initial CIP	2nd Flow Pressure	Final CIP
Time Defl. 75/60 Temp. Corr. .000"			
P0 .000 886.1	.000 1075.3	.000 1076.9	.000 1076.9
P1 .030 1075.1			
P2 .060 1073.0			
P3 .090 1075.3			
P4			
P5		.030 1076.9	
P6			
P7			
P8			
P9			
P10	.200 1076.9	.410 1076.9	
4.66 Minute Intervals	— Minute Intervals	— Minute Intervals	— Minute Intervals

Remarks:

Company ESSO

Date 23.12.66

	Time	Time	
Initial Hydro Mud Pressure	—	1268.1	
Initial Flow	—	587.6	
Final Flow	14	1037.2	
Initial Closed In Pressure	30	1040.0	
Initial Flow	—	1040.0	Bohrung 1 Test No. 1
Final Flow	3	1040.0	Bohrung 1 Test No. 2
Final Closed In Pressure	60	1040.0	BT No. 1902 Teufe 2335'
Final Hydro Mud Pressure	—	1244.9	12 Std. Uhr No. 125°F -°C
1st Flow Pressure	Initial CIP	2nd Flow Pressure	Final CIP
Time Defl. 75/60 Temp. Corr. .000"			
P0 .000 587.6	.000 1037.2	.000 1040.0	.000 1040.0
P1 .030 1037.1			
P2 .066 1027.0			
P3 .100 1037.2			
P4			
P5			.030 1040.0
P6			
P7			
P8			
P9			
P10	.200 1040.0		.410 1040.0
4.66 Minute Intervals	— Minute Intervals	— Minute Intervals	— Minute Intervals

Remarks:

TQ2411

Flow Time	1st Min.	2nd Min.	Date	Ticket Number	
Closed In Press. Time	1st Min.	2nd Min.	Kind of Job	T 449636	
Pressure Readings	Field	Office Corrected	Tester	Halliburton District 6T. Yarmouth	
Depth Top Gauge	2735 Ft.	Blanked Off	Drilling Contractor	H. C. Abbott Witness B. C. Hubley	
BT. P.R.D. No.	1903	12	Elevation	Top Packer 2351'	
Initial Hydro Mud Pressure	1263	1268.1	Total Depth	Bottom Packer 2356'	
Initial Closed in Pres.	1040	1040.0	Interval Tested	Formation Tested lower Portland	
Initial Flow Pres.	253	1 587.6 2 1040.0	Casing or Hole Size	Casing Top Perfs. Bot.	
Final Flow Pres.	1040	1 1040.0 2 1040.0	Surface Choke	Bottom Choke 5"	
Final Closed in Pres.	1040	1040.0	Size & Kind Drill Pipe	Drill Collars Above Tester 24" x 614"	
Final Hydro Mud Pressure	1253	1244.9	Mud Weight	Mud Viscosity 40	
Depth Cen. Gauge	ft.	Blanked Off	Temperature	125 °F Est.	Anchor Size ID OD X
BT. P.R.D. No.		Hour Clock	Depths Mea. From	Depth of Tester Valve 23.36' ft.	
Initial Hydro Mud Pres.			Cushion	NONE ft.	Depth Back Pres. Valve 23.31' ft.
Initial Closed in Pres.			Recovered	60' feet of	Drilg. Fluid
Initial Flow Pres.			Recovered	21.32'	feet of salt water slightly
Final Flow Pres.			Recovered		feet of gas cut - (58000 ppm)
Final Closed in Pres.			Recovered		feet of
Final Hydro Mud Pres.			Oil A.P.I. Gravity	Water Spec. Gravity	
Depth Bot. Gauge	2406 ft.	yes	Gas Gravity	Surface Pressure 0 psi	
BT. P.R.D. No.	1904	12	Tool Opened	8:05 A.M.	Tool Closed 8:52 A.M. A.M. B.M.
Initial Hydro Mud Pres.	1307	1305.3	Remarks	Tool opened with strong steady blow until tool closed at 8:19 A.M. -	
Initial Closed in Pres.	1068	1076.9		Reopened tool 8:49 A.M. with very weak blow dead in two min. Tool closed tool 8:52 A.M. - Palled loose	
Initial Flow Pres.	1045	1 886.1 2 1075.3		9:52 A.M.	
Final Flow Pres.	1068	1 1076.9 2 1076.3			
Final Closed in Pres.	1068	1076.3			
Final Hydro Mud Pres.	1291	1281.5			

FORMATION TEST DATA

TQ24/1

Flow Time	1st Min.	2nd Min.	Date	Ticket Number	
Closed In Press. Time	1st Min.	2nd Min.	21 Dec. 1966	T449655	
Pressure Readings	Field	Office Corrected	Kind of Job	Helliburton District G.T. Yarmouth	
Depth Top Gauge	2087 ft.	No Blanked Off	Tester	H. C. Abbott Witness John Hubley	
BT. P.R.D. No.	1903	12 Hour Clock	Drilling Contractor	DEA	
Initial Hydro Mud Pressure	1085	1095.0	Elevation	Top Packer 2101	
Initial Closed in Pres.	892	888.2	Total Depth	Bottom Packer 2107	
Initial Flow Pres.	225	1 20.2 2 172.4	Interval Tested	Formation Tested (Upper Portland)	
Final Flow Pres.	340	1 176.1 2 345.7	Gaging or Hole Size	Casing Top Perfs. Bot. —	
Final Closed in Pres.	864	865.1	Surface Choke	Bottom Choke 3/4" 3/4"	
Final Hydro Mud Pressure	1085	1100.5	Size & Kind Drill Pipe	Drill Collars Above Tester 2 1/2" x 6 1/4" 1.0" - LENGTH	
Depth Cen. Gauge	ft.	Blanked Off	Mud Weight	Mud Viscosity 40	
BT. P.R.D. No.		Hour Clock	Temperature	Anchor Size ID & Length OD X	
Initial Hydro Mud Pres.			Depths Mea. From	Depth of Tester Valve 2086 ft.	
Initial Closed in Pres.			TYPE	Cushion none Ft. Depth Back Pres. Valve 2081 ft.	
Initial Flow Pres.	1		Recovered	115' Feet of Salt water (45000 psi)	
Final Flow Pres.	2		Recovered	Ft. (45000 psi)	
Final Closed in Pres.			Recovered	Ft. of	
Final Hydro Mud Pres.			Recovered	Ft. of	
Depth Bot. Gauge	2185 ft.	Yes Blanked Off	Oil A.P.I. Gravity	Water Spec. Gravity	
BT. P.R.D. No.	1904	12 Hour Clock	Gas Gravity	Surface Pressure 0	
Initial Hydro Mud Pres.	1140	1146.7	Tool Opened	AMT. P.M.	Tool Closed
Initial Closed in Pres.	934	939.7	5:56		7:12 AMH P.M.
Initial Flow Pres.	220	1 83.6 2 217.9	Remarks	Tool opened with moderate blow increasing to strong in 3 min. Blow steady until closed in at 6:12 P.M. - Reopened tool 6:42 P.M. with weak blow	
Final Flow Pres.	388	1 232.0 2 393.6		increasing to strong in 2 min. Blow steady	
Final Closed in Pres.	918	916.1		Closed for FCIP 7:12 P.M. pulled loose 7:47 P.M.	
Final Hydro Mud Pres.	1140	1134.8			

FORM 1224-R2-SANDEFER

FORMATION TEST DATA

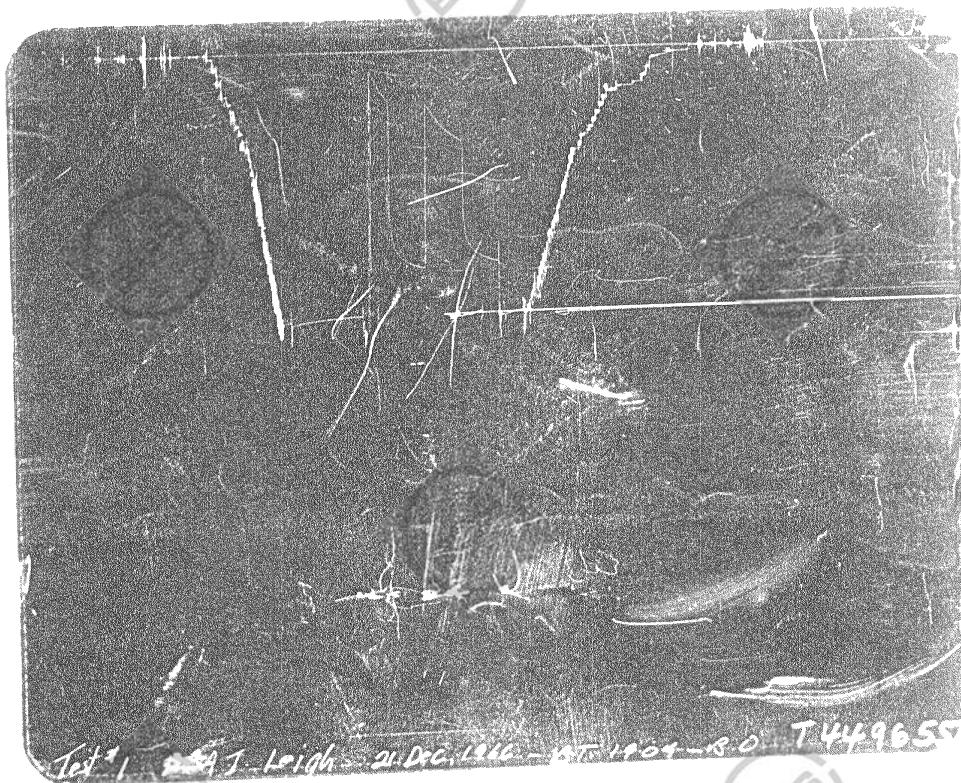
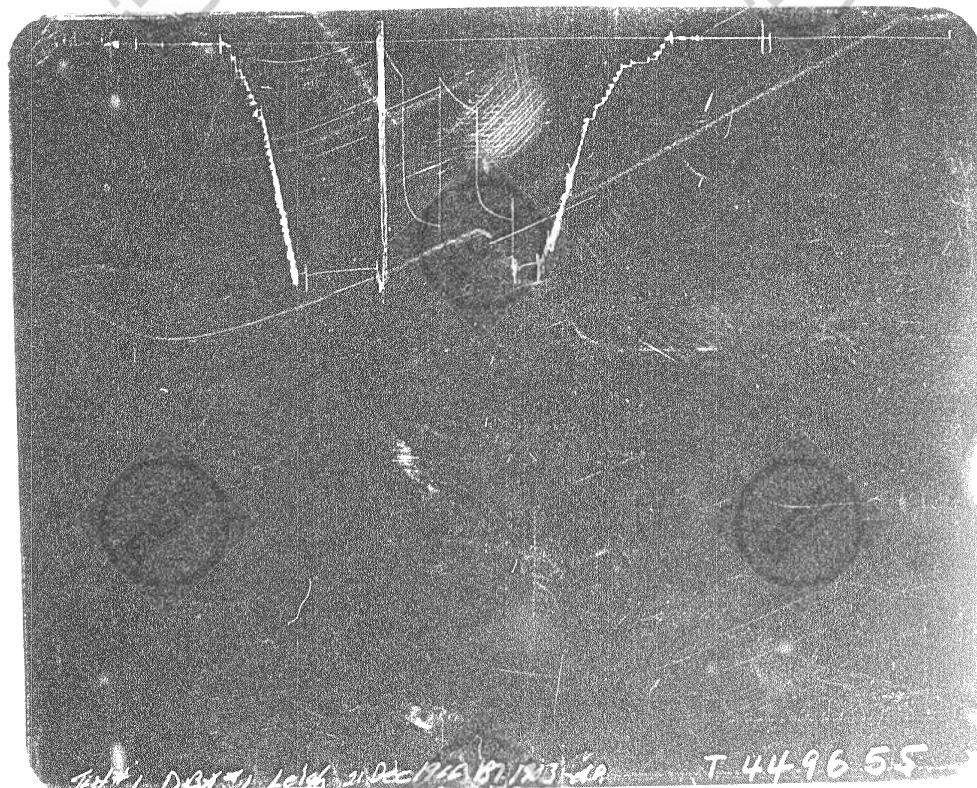
Company ESSO

Date 21. 12. 66

Time			atm PSI	
Initial Hydro Mud Pressure	-	1146.7	Ticket No.	T 449655
Initial Flow	-	83.6	Feld	LE164
Final Flow	16	217.9	Bohrung	1 Test No. 1
Initial Closed In Pressure	30	939.7	BT No.	1904 Teufe 2185'
2nd	Initial Flow	-		
Final Flow	30	232.0		
Final Closed In Pressure	30	393.6		
Final Hydro Mud Pressure	-	916.1	Std. Uhr No.	12
		1134.8	Temperatur	125°F °C

1st Flow Pressure		Initial CIP		2nd Flow Pressure		Final CIP	
Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"
P0	000 83.6	000 217.9	000 232.0	000 393.6			
P1	.033 184.3	.019 829.4	.040 278.0	.019 810.5			
P2	.066 186.5	.038 868.8	.080 319.4	.038 845.1			
P3	.100 217.9	.057 889.3	.120 349.1	.057 864.1			
P4	.076 902.4	.160 371.8	.076 877.5				
P5	.095 912.9	.200 393.6	.095 887.7				
P6	.114 920.0		.114 895.6				
P7	.133 926.3		.133 901.9				
P8	.152 931.0		.152 906.6				
P9	.171 935.8		.171 911.3				
P10	.190 939.7		.190 916.1				
	5.33 Minute Intervals	3 Minute Intervals	6 Minute Intervals	3 Minute Intervals			

Remarks:



Company ESSO

Date 21. 12. 66

Time			atm PSI	
Initial Hydro Mud Pressure	-	1095.0	Ticket No.	T 449655
Initial Flow	-	20.2	Feld	LE164
Final Flow	16	172.4	Bohrung	1 Test No. 1
Initial Closed In Pressure	30	888.2	BT No.	1903 Teufe 2087'
2nd	Initial Flow	-		
Final Flow	30	176.1		
Final Closed In Pressure	30	345.7		
Final Hydro Mud Pressure	-	865.1	Std. Uhr No.	12
		1100.5	Temperatur	125°F °C

1st Flow Pressure		Initial CIP		2nd Flow Pressure		Final CIP	
Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"	Time	PSI atm Defl. .000"
P0	000 20.2	000 172.4	000 176.1	000 345.7			
P1	.035 79.8	.019 788.6	.040 230.2	.019 771.1			
P2	.070 132.0	.038 821.8	.080 274.2	.038 799.7			
P3	.105 182.4	.057 842.1	.120 301.7	.057 816.2			
P4	.076 854.0	.160 325.5	.076 828.3	.076 828.3			
P5	.095 863.3	.200 345.7	.095 837.5	.095 837.5			
P6	.114 870.6		.114 844.8				
P7	.133 876.2		.133 851.3				
P8	.152 881.7		.152 856.8				
P9	.171 885.4		.171 861.4				
P10	.190 888.2		.190 865.7				
	5.33 Minute Intervals	3 Minute Intervals	6 Minute Intervals	3 Minute Intervals			

Remarks:

Appendix C

Groundwater Quality Data

APPENDIX C - WATER QUALITY RESULTS

Table B-1 Newstead Farm At Handcross TQ23SW46

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Lead	µg/l	< 2	< 2	< 2	< 2	< 2	16.7	< 2	< 2	< 2	< 2
Lead, Dissolved	µg/l	< 2	< 2	< 2	< 2	< 0.1	0.508	0.603	< 0.1	< 0.1	< 0.1
pH			8.97			8.98		9.05	9.06	9.02	9
Temperature of Water	°C	11.2	11.6	13.2	10.6	11.5	11.3	15.8	12.7	13	13.2
Conductivity at 25 C	µs/cm	993	974	980	988	982	961	977	968	1022	978
Mercury, Dissolved	µg/l								< 0.01		
Cadmium, Dissolved	µg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	µg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammoniacal Nitrogen as N	mg/l	0.312	0.309	0.301	0.305	0.311	0.304	0.322	0.33	0.353	0.31
Nitrogen, Total Oxidised as N	mg/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Nitrate as N	mg/l	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	0.193	< 0.196	< 0.196	< 0.196
Nitrite as N	mg/l	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.0066	< 0.004	< 0.004	< 0.004
Hardness, Total as CaCO ₃	mg/l	< 3.73	4.38	4.58	3.73	3.86	6.65	3.88	3.86	3.93	3.73
Alkalinity to pH 4.5 as CaCO ₃	mg/l	467	469	464	458	466	462	473	475	473	470
Sulphide as S	mg/l		< 0.01			< 0.01		0.016	< 0.01	0.019	< 0.02
Bromide	mg/l		0.0567			0.0568		0.0533	0.0468	0.0531	
Chloride	mg/l	17.7	18	17.9	17.9	17.8	18.2	17.8	17.8	18.3	18
Cyanide as CN	mg/l									< 0.005	
Fluoride	mg/l	1.69	1.6	2.05	1.77	1.75	1.76	1.65	1.78	1.55	1.6
Iodide	mg/l		< 0.003			< 0.003		< 0.003	0.003	< 0.003	< 0.003
Orthophosphate, reactive as P	mg/l	0.354	0.349	0.345	0.364	0.343	0.374	0.393	0.349	0.355	0.35
Silica, reactive as SiO ₂	mg/l	7.52	7.72	7.77	6.9	7.37	7.64	7.44	7.78	7.53	7.9
Sulphate as SO ₄	mg/l	36.1	34.8	34.7	34.1	35.6	35	36.2	36.3	36.1	35

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Sodium, Dissolved	mg/l	238	233	235	251	244	228	234	236	237	240
Sodium	mg/l	238	230	236	232	243	240	246	241	238	230
Potassium, Dissolved	mg/l	0.795	0.838	0.794	0.801	0.745	0.836	0.716	0.944	0.87	0.86
Potassium	mg/l	1.03	0.8	0.714	0.761	0.803	0.785	0.705	0.845	0.855	0.83
Magnesium, Dissolved	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Magnesium	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Calcium, Dissolved	mg/l	< 1	1.26	1.34	1	1.05	2.17	1.06	1.05	1.08	1
Calcium	mg/l	< 1	1.24	1.1	< 1	1.05	2.34	< 1	< 1	1.09	< 1
Carbon, Organic, Dissolved as C :- {DOC}	mg/l	0.38	0.29	0.34	0.32	0.4	0.27	0.3	0.23	0.33	0.39
Chromium	µg/l	< 0.5	< 0.5	0.59	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
pH : In Situ		9.09	8.98	9.03	8.94	8.97	9.08	9.01	9.1	9.15	9.09

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Ionic Balance: Dissolved	%					0.725	-2.1	-2.11	-1.9	-1.41	-0.632
Chloroxuron	µg/l									< 0.01	
Monuron	µg/l									< 0.01	
Zinc, Dissolved	µg/l	< 5	< 5	< 5	< 5	1.18	31.7	14.6	1.52	4.04	0.92
Chromium, Dissolved	µg/l	< 0.5	< 0.5	0.71	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel, Dissolved	µg/l	1.65	< 1	< 1	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	µg/l	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Silver	µg/l	< 1	< 1	< 1	< 1						
Aluminium, Dissolved	µg/l	< 10	16.2	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tin, Dissolved	µg/l					< 2	< 2	< 2		< 2	
Tin	µg/l	< 2	< 2	< 2	< 2						
Arsenic, Dissolved	µg/l									< 1	

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Selenium, Dissolved	µg/l									< 1	
Manganese	µg/l	< 10	14.1	12.3	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Iron	µg/l	< 30	< 30	50	< 30	< 30	497	33.6	< 30	< 30	< 30
Iron, Dissolved	µg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Cobalt, Dissolved	µg/l					< 1	< 1	< 1		< 1	
Cobalt	µg/l	< 1	< 1	< 1	< 1						
Aluminium	µg/l	11	20.9	39.7	< 10	12.9	< 10	< 10	< 10	< 10	< 10
Antimony	µg/l	< 1	< 1	< 1	< 1						
Boron	µg/l	1030	975	1030	1060	1050	997	1040	1020	1050	1100
Titanium	µg/l	< 2	< 2	< 2	< 2						
Vanadium	µg/l	< 2	< 2	< 2	< 2						
Barium	µg/l	18	17.9	18	16.6	16.3	19.8	16.2	17.3	18.2	17
Strontium	µg/l	21.8	24.4	23	21.9	21.5	27.2	20.8	21.7	23.1	21
Lithium	µg/l	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Thallium : Total	µg/l	< 1									

Determinand	Units	04 December 2023	01 May 2023	08 August 2023	29 December 2023	29 April 2023	13 October 2023	04 July 2023	13 April 2023	02 July 2023	13 May 2023
Copper, Dissolved	µg/l	< 1	< 1	< 1	< 1	0.151	3.18	1.07	0.259	0.543	0.19
Copper	µg/l	< 1	< 1	2.07	2.07	3.36	64.5	3.2	< 1	< 1	1
Silver, Dissolved	µg/l					< 1	< 1	< 1		< 1	
Zinc	µg/l	< 5	< 5	< 5	< 5	< 5	284	15.1	< 5	< 5	< 5
Manganese, Dissolved	µg/l	< 10	13.7	12.7	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nickel	µg/l	2.05	< 1	< 1	< 1	< 1	1.04	< 1	< 1	< 1	< 1
Uranium	µg/l	< 0.5									
Ionic Balance	%	-0.714	-2.48	-0.752	-0.983	0.43	0.503	0.299	-0.897	-1.36	-2.65
Sulphate, Dissolved as SO4	mg/l					34.6	35.4	35.7	36.2	34.5	36
Molybdenum	µg/l	< 3	< 3	< 3	< 3						
Bicarbonate as HCO3	mg/l	570	572	566	559	569	564	577	580	577	573
Oxygen, Dissolved, Saturation	%	55.9	45.4	43.2	56.2	77.7	44.9	81.2	27	36.8	19.7

Table B-2 Eskimo Ice Crawley

Determinand	Units	05 April 2023	09 October 2023	30 April 2023	16 October 2023	25 April 2023	17 December 2023	27 April 2023	18 October 2023	26 June 2023
Lead, Dissolved	µg/l	0.229	0.1	0.439	0.389	0.214	0.44	1.2	0.21	0.34
pH		8.91		8.91		8.88				
Temperature of Water	°C	10.6	12.5	10.6	13.1	12.4	10.8	11	13.1	15.2
Conductivity at 25 C	µs/cm	837	787	772	783	765	767	758	779	776
Cadmium, Dissolved	µg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ammoniacal Nitrogen as N	mg/l	0.28	0.282	0.283	0.284	0.278	0.29	0.27	0.28	0.28
Nitrogen, Total Oxidised as N	mg/l	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Nitrate as N	mg/l	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196	< 0.196
Nitrite as N	mg/l	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Hardness, Total as CaCO ₃	mg/l	< 3.73	< 3.73	< 3.73	< 3.73	< 3.73	< 3.73	< 3.73	< 3.73	< 3.73

Alkalinity to pH 4.5 as CaCO ₃	mg/l	353	357	362	302	345	350	360	360	350
Chloride	mg/l	23.7	22.7	23.3	22.7	23.2	23	23	23	23
Fluoride	mg/l	2.11	6.39	7.05	5.13	5.05	4.9	7.8	5	5.9
Orthophosphate, reactive as P	mg/l	0.521	0.523	0.523	0.513	0.52	0.53	0.54	0.53	0.56
Silica, reactive as SiO ₂	mg/l	7.39	7.51	7.39	7.48	7.21	7.3	7.7	7.4	7.6
Sodium, Dissolved	mg/l	186	186	178	182	186	180	180	180	180
Potassium, Dissolved	mg/l	0.675	0.679	0.712	0.74	0.733	0.71	0.72	0.74	0.73
Magnesium, Dissolved	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Calcium, Dissolved	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
pH : In Situ		8.9	8.93	8.89	8.84	8.94	8.94	8.95	8.88	8.82
Ionic Balance: Dissolved	%	0.0338	-0.344	-3.27	5.6	0.873	-1.23	-2.32	-2.32	-1.1
Zinc, Dissolved	µg/l	< 0.5	0.889	0.517	< 0.5	0.829	0.8	1.2	3.6	0.96
Chromium, Dissolved	µg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Nickel, Dissolved	µg/l	< 0.5	< 0.5	0.669	1.03	3.48	2.1	4	4.6	11
Copper, Dissolved	µg/l	< 0.1	< 0.1	0.123	0.181	0.278	< 0.1	0.47	0.12	0.61
Silver, Dissolved	µg/l	< 1								
Manganese, Dissolved	µg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Iron, Dissolved	µg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	43
Aluminium, Dissolved	µg/l	12.7	12.8	< 10	< 10	< 10	< 10	29	< 10	< 10

Appendix D

Discharges

Permit registration no.	Permit holder	Site name	Site address	Site type	Effluent type	Easting	Northing	Start Date	Distance to site (km)
TH/CTCR.082 5/001	Mr. D.M. Stass	Stw, Bungalow Adj. Yew Tree Cott	Bungalow Adjacent To Yew Tree Cottage, Rusper Road, Ifield, Sussex	Water treatment (not water company at a private premises)	Sewage - not water company	524100	137100	15/02/1966	< 0.5
TH/TEMP.279 7/002	Thames Water Utilities Ltd	Millbank, Crawley	Millbank, Cr, Millbank, Crawley, Millbank, Crawley	Storm Tank/CSO on Sewerage Network (water company)	Sewage - water company	524510	136480	03/09/2010	< 0.5
TH/CASM.001 4/001	Mrs Gambien	Wood Cottage	Wood Cottage, Wood Cottage, Ifield Wood, Crawley, West Sussex	Domestic property (single) (incl. farmhouse)	Sewage - not water company	523900	138200	18/08/1999	< 0.5
TH/CASM.014 2/001	Premier Inn Hotel Limited	Proposed Filling Station & Hotel	Gossops, Proposed Filling Station & Hotel, Crawley Avenue, Gossops Green, Crawley, Surrey	Shop incl. Garden Centre/Retail Trade(not Motor Vehicle)	Trade	525600	136200	15/09/1999	1.0 to 1.5
TH/CASM.027 4/001	Peter Keal	Stumbleholm Lodge and Cottage	Stubleholme, Stumbleholm Lodge And Cottage, Rusper Road, Ifield, Crawley, West Sussex, RH11 0lq	Domestic property (multiple) (incl. farmhouses)	Sewage - not water company	522800	137380	07/06/2000	0.5 to 1.0
TH/CTCR.127 3/001	Mr Jeremy Amos	The Gate Inn	The Gate Inn, The Gate Inn, Ifield, Crawley, Sussex	Food & Beverage Services/Cafe/Restaurant/ Pub	Sewage - not water company	522600	137300	08/05/1972	0.5 to 1.0
TH/CNTM.001 4/001	Crawley Borough Council	Willoughby Farm Development	Willoughby F, Willoughby Farm Development, Ifield Avenue, Crawley, West Sussex	Farms (not house)/ Crop & Animal Rearing/Plant Nursery	Miscellaneous	525200	138600	20/01/1992	< 0.5
TH/CATM.312 5/001	Mr. M. Gooda	Little Foxes	Little Foxes, Little Foxes, Charlwood Road, Ifield, Crawley, West Sussex	Holiday Accom/Camp Site/Caravan Site/Hotel/Hostel	Sewage - not water company	524250	138900	05/02/1998	< 0.5
TH/CTCR.167 3/001	Croudace Homes Limited	Rusper Cabins	Rusper Cabin, Rusper Cabins, Lambs Green, Horsham, West Sussex, RH12 4rq	Making of Computers/Electronics/ Optical Products	Sewage - not water company	522100	136800	29/07/1980	1.0 to 1.5
TH/CTCR.195 6/001	West Sussex County Council	Buchan Country Park	Buchan Count, Buchan Country Park, South Of A264, Faygate, Crawley, Sussex	Sport, Amusement & Recreation/Golf Club/Gym/Theme Pk/Spa	Sewage - not water company	524500	134650	28/02/1983	1.5 to 2.0
TH/CTCR.125 4/001	Mr P. K. Muller and Ms T. Stockbridge	1, Cannonbury Villas	1, Cannonbur, 1, Cannonbury Villas, Lambs Green, Rusper, Sussex	Domestic property (single) (incl. farmhouse)	Sewage - not water company	521900	136801	14/02/1972	1.0 to 1.5
TH/CNTM.138 5/001	Mr. G. Martin	The Lamb	The Lamb, La, The Lamb, Lambs Green, West Sussex	Food & Beverage Services/Cafe/Restaurant/ Pub	Sewage - not water company	521900	136800	03/06/1994	1.0 to 1.5

Permit registration no.	Permit holder	Site name	Site address	Site type	Effluent type	Easting	Northing	Start Date	Distance to site (km)
TH/CNTW.121 4/001	P.J. Brown Civil Engineering	Burlands Farm	Burlands Far, Burlands Farm, Ifield Road, Ifield Wood, Crawley, Sussex	Specialised Construction/Demolition/Painting/Joinery	Trade	524100	139300	27/08/1991	0.5 to 1.0
TH/CTCP.062 6/001	Mrs Rosemary Corner Mr John and Mrs Elaine Tiffin Mrs S Grant	Chowles, Chowles Court & Barn	Stp, Chowles, Chowles, Chowles Court & Barn, Ruper, Sussex	WwTW (not water co) (not STP at a private premises)	Sewage - not water company	521800	137400	13/02/1969	1.5 to 2.0
TH/CTWC.242 3/001	Euro Self Drive Limited W.B. Floor Machines Limited et al.	Holmbush Potteries	Holmbush Pot, Holmbush Potteries, Crawley Road, Faygate, Horsham, Surrey	Making of Glass/Ceramics/Cement/Cutting Stone	Sewage - not water company	523200	134500	09/05/1988	1.5 to 2.0
TH/CTWC.219 2/002	Mr. D.R. Shaw	The Vineries Nurseries	The Vineries, The Vineries Nurseries, Lambs Green, Near Ruper, Sussex	Farms (not house)/Crop & Animal Rearing/Plant Nursery	Sewage - not water company	521600	136700	10/02/1992	1.5 to 2.0
TH/CASM.030 5/001	Mrs Emma Thomas	Axmas Cottage	Axmas Cot, Axmas Cottage, Ruper Road, Lambs Green, West Sussex, RH12 4rg	Domestic property (single) (incl. farmhouse)	Sewage - not water company	521600	136400	13/07/2000	1.5 to 2.0
TH/CASM.030 4/001	Mr J Sutton	Outaway And Annex	Outaway, Outaway And Annex, Bonnets Lane, Ifield, Crawley, West Sussex, RH11 0ny	Domestic property (multiple) (incl. farmhouses)	Sewage - not water company	525350	139350	13/07/2000	0.5 to 1.0
TH/CATM.367 4/001	Mrs Jane Vaughan-Smith	Taylin House	Taylin House, Taylin House, Fay Cottage, Faygate Lane, Faygate, West Sussex	Domestic property (single) (incl farmhouse)	Sewage - not water company	521500	135800	10/03/1999	1.5 to 2.0
TH/CNTW.050 9/001	Ms Nicolette Lindon-Taylor	Taylin House	Taylin House, Taylin House, Fay Cottage, Faygate Lane, Faygate, West Sussex	Domestic property (single) (incl. farmhouse)	Sewage - not water company	521500	135800	25/05/1990	1.5 to 2.0
TH/CNTM.015 5/001	Decision Graphics Uk Ltd	The Shambles	The Shambles, The Shambles, Bonnets Lane, Ifield, Crawley, West Sussex	Real Estate Activities/Buying/ Selling/Renting	Sewage - not water company	525400	139550	13/03/1992	0.5 to 1.0
TH/CTCR.182 2/001	Terminus Securities Ltd	Bcp Car Park	Bcp Car Park, Bcp Car Park, Charlwood Road, Lowfield Heath, Gatwick, Sussex	Sale of Motor Vehicles/ Maintenance & Repair	Sewage - not water company	525300	139700	10/11/1981	1.0 to 1.5
TH/CTWC.214 4/001	William Reed Ltd	Offices	Offices, Bro, Offices, Broadfield Park, Brighton Road, Crawley, Sussex	Undefined or Other	Miscellaneous	526580	134670	01/02/1988	2.5 to 3.0
TH/CTCR.125 1/001	Cottesmore (Brighton) Limited	Cottesmore School	Cottesmore S, Cottesmore School, Buchan Hill, Pease Pottage, Crawley, Sussex	Education/Nursery/School /College /Uni./ Training Venue	Sewage - not water company	525200	133600	14/02/1972	2.5 to 3.0
TH/CATM.316 1/001	American Golf (Uk) Limited	Cottesmore Golf & Country Club	Cottesmore G, Cottesmore Golf & Country Club, Buchan Hill, Pease Pottage, Crawley, Sussex	Sport, Amusement & Recreation/ Golf Club/ Gym/ Theme Pk/ Spa	Sewage and Trade combined	524300	133300	09/02/1998	3.0 to 3.5
TH/CNTW.107 4/001	Mr. M.F. Rogerson	Cottesmore Golf & Country Club	Cottesmore G, Cottesmore Golf & Country Club, Buchan Hill, Pease Pottage, Crawley, Sussex	Sport, Amusement & Recreation/ Golf Club/ Gym/ Theme Pk/ Spa	Sewage - not water company	524300	133300	10/06/1991	3.0 to 3.5
TH/CASM.016 5/001	Mr And Mrs Wynniatt-Husey	Faygate House	Faygate, Faygate House, Wimlands Lane, Faygate, West Sussex	Domestic property (single) (incl. farmhouse)	Sewage - not water company	521200	135000	09/11/1999	2.0 to 2.5

Permit registration no.	Permit holder	Site name	Site address	Site type	Effluent type	Easting	Northing	Start Date	Distance to site (km)
TH/CTCR.117 1/001	Southern Water Services Limited	Service Reservoir	Service Rese, Service Reservoir, Buchan Hill, Crawley, Sussex	WTW/Water Collection/ Treatment/ Supply	Trade	525300	133400	14/05/1970	3.0 to 3.5
SO/P01885/00 1	Faygate Business Centre	Faygate Railway Station	P01885, Faygate Railway Station, Faygate Railway Station, Faygate, West Sussex	Land Transport & via Pipelines/ Freight	Sewage - not water company	521600	134400	20/10/1988	2.5 to 3.0
SO/EPRHP39 22XF/001	Senior Living (Durrants) Limited	Durrants Village	Durrantsvill, Durrants Village, Agates Yard, Faygate Lane, Horsham, West Sussex, RH12 4dn	Domestic property (multiple) (incl. farmhouses)	Sewage - not water company	521560	134440	23/05/2011	2.5 to 3.0
TH/EPRQB34 93ED/001	Britannia Hotels No.2 Limited	Russ Hill Hotel Stp	Russ Hill, Russ Hill Hotel Stp, Charlwood, Gatwick, West Sussex, RH6 0el	Holiday Accom/ Camp Site/Caravan Site/Hotel/Hostel	Sewage - not water company	522921	140167	21/09/2020	2.0 to 2.5
TH/CTCR.071 3/001	Roband Electronics Plc	Charlwood Works	Charlwood Wo, Charlwood Works, Lowfield Heath Road, Charlwood, Horley, Surrey	Making of Computers/ Electronics/ Optical Products	Trade	524978	140380	21/07/1964	1.5 to 2.0
TH/CTCP.047 9/001	Roband Electronics Plc	Factory Premises	Factory Prem, Factory Premises, Factory Premises, Charlwood, Surrey	Making of Computers/ Electronics/ Optical Products	Sewage - not water company	524978	140381	11/03/1965	1.5 to 2.0
TH/CTWC.068 0/001	W. H. Brakspear & Sons Limited	Ghyll Manor Hotel	Ghyll Manor, Ghyll Manor Hotel, Rusper, Sussex	Holiday Accom/ Camp Site/ Caravan Site/ Hotel/ Hostel	Sewage - not water company	520600	137200	04/03/1986	2.5 to 3.0
TH/CTWC.350 4/001	Crawley Borough Council	55 Flats, Dalewood Gardens	55 Flats, Da, 55 Flats, Dalewood Gardens, Woodfield Road, Northgate, Crawley, West Sussex	Domestic property (multiple) (incl. farmhouses)	Miscellaneous	528000	137800	18/08/1989	2.5 to 3.0
SO/EPRWB39 98RF/001	Medivet Group Ltd	Medivet Faygate	Medivet, Medivet Faygate, Tower Road, Faygate, Horsham, RH12 4sd	Veterinary Activities/ Animal Shelter/ RSPCA	Sewage - not water company	521986	133684	29/11/2022	3.0 to 3.5
TH/CTCR.176 8/003	Thames Water Utilities Ltd	Colgate Stw	Colgate Stw, Colgate Stw, Colgate Stw, Sussex	WwTW/ Sewage Treatment Works (water company)	Sewage - water company	523300	133000	01/04/2010	3.0 to 3.5
TH/TEMP.249 5/003	Thames Water Utilities Ltd	Colgate Wastewater Treatment Works	Colgate Wwtw, Colgate Wastewater Treatment Works, Colgate, West Sussex, RH12 4sz	WwTW/ Sewage Treatment Works (water company)	Sewage - water company	523210	133020	29/03/2018	3.0 to 3.5
TH/EPRQB37 96NW/001	Thames Water Utilities Ltd	Rusper Sewage Pumping Station	Rusper Sp, Rusper Sewage Pumping Station, Field End, Rusper, Horsham, West Sussex, RH12 4qz	Pumping Station on Sewerage Network (water company)	Sewage - water company	520180	136584	09/03/2020	2.5 to 3.0
SO/EPRMB35 91RL/001	Mr Les Mitchell Mr Tim Weekes	Wimlands Cottages Stp	Wimlands, Wimlands Cottages Stp, Wimland Road, Faygate, Horsham, West Sussex, RH12 4ss	Domestic property (multiple) (incl. farmhouses)	Sewage - not water company	520652	134840	19/04/2019	3.0 to 3.5
SO/P00532/00 5	West Sussex County Council	Middle Hill	P00532, Middle Hill, Middle Hill, Faygate Forest, Faygate, West Sussex, RH12 4sd	Waste Collection/ Treatment/ Disposal/ Materials Recovery	Trade	521600	133600	01/06/2023	3.0 to 3.5
TH/CTCR.192 6/002	Thames Water Utilities Ltd	Charlwood Ps	Charlwood, S, Charlwood Ps, Horley Road, Charlwood, Horley, Surrey, RH6 0bj	Storm Tank/ CSO on Sewerage Network (water company)	Sewage - water company	524960	140970	07/03/2019	2.0 to 2.5

Permit registration no.	Permit holder	Site name	Site address	Site type	Effluent type	Easting	Northing	Start Date	Distance to site (km)
SO/P11012/001	Saxon Weald Homes Ltd	Colgate S.T.W.	P11012, Colgate S.T.W., Colgate S.T.W., North Street, Horsham, West Sussex	WwTW (not water co) (not STP at a private premises)	Sewage - not water company	523300	132700	15/01/1987	3.5 to 4.0
SO/P10070/002	Peter Ronald Tobutt	Horsham Scouts Districts Campsite	P10070, Horsham Scouts Districts Campsite, Horsham Scouts Districts Campsite, Beacon Hill Campsite, Tower Road, Colgate, Horsham, West Sussex	Holiday Accom/ Camp Site/ Caravan Site/ Hotel/ Hostel	Sewage - not water company	522210	133090	16/10/2002	3.5 to 4.0
SO/P06622R/002	Roffey Park Management (No. 2) Ltd	Roffey Park Estate	P05423, Roffey Park Estate, Forest Road, Colegate, Horsham	Domestic property (multiple) (incl farmhouses)	Sewage - not water company	521310	133330	21/12/2012	3.5 to 4.0
TH/CTWC.1325/001	Tesco Stores Limited	Tesco Superstore	Tesco Supers, Tesco Superstore, Hazelwick Avenue, Crawley, West Sussex	Shop incl Garden Centre/Retail Trade (not Motor Vehicle)	Miscellaneous	528800	137800	18/11/1986	3.5 to 4.0
SO/EPRDB3995AW/001	Mr Ritchie Gatt	The Frog & Nightgown	The Frog, The Frog & Nightgown, Wimland Road, Faygate, Horsham, West Sussex, RH12 4ss	Food & Beverage Services/ Cafe/ Restaurant/ Pub	Sewage - not water company	520554	133956	14/03/2016	3.5 to 4.0
TH/CTWC.0999/002	David And Julia Roberts	Trumbles Hotel & Restaurant	Trumbles Hot, Trumbles Hotel & Restaurant, Stanhill, Charlwood, Surrey, RH6 0EP	Holiday Accom/ Camp Site/ Caravan Site/ Hotel/ Hostel	Sewage - not water company	524100	141700	05/06/1991	3.0 to 3.5
SO/P12347/002	Beedingwood Residents Limited	1,2,3,4,5,6 & 7 Beedingwood Drive	P12347, 1, 2, 3, 4, 5, 6 & 7 Beedingwood Drive, Forest Road, Colgate, Horsham, West Sussex, RH12 4te	Domestic property (single) (incl. farmhouse)	Sewage - not water company	521480	132740	04/01/2011	4.0 to 4.5
TH/TEMP.2831/002	Thames Water Utilities Ltd	Pease Pottage	Pease Pottage	WwTW/ Sewage Treatment Works (water company)	Sewage - water company	526300	132301	03/09/2010	> 4.5
P02374	N/A	N/A	N/A	N/A	Domestic property (single) (incl. farmhouse)	520250	133050	21/12/2012	> 4.5
P11050	N/A	N/A	N/A	N/A	Education/Nursery/ School/ College/ Uni/ Training Venue	520608	133204	14/09/1993	> 4.5
P04853	N/A	N/A	N/A	N/A	Offices Admin + Support	521610	132230	20/05/1994	> 4.5
P10062	N/A	N/A	N/A	N/A	Farms (not house)/ Crop + Animal Rearing/Plant Nursery	524010	131810	19/12/2001	> 4.5
P02517	N/A	N/A	N/A	N/A	Farms (not house)/ Crop & Animal Rearing/ Plant Nursery	518460	137470	29/08/1989	> 4.5
P03619	N/A	N/A	N/A	N/A	Food & Beverage Services/ Cafe/ Restaurant/ Pub	518600	136900	04/07/1991	> 4.5

Permit registration no.	Permit holder	Site name	Site address	Site type	Effluent type	Easting	Northing	Start Date	Distance to site (km)
P06071	N/A	N/A	N/A	N/A	Undefined or Other	518630	137980	22/03/1996	> 4.5
P05370	N/A	N/A	N/A	N/A	Domestic property (single) (incl. farmhouse)	518270	136310	25/05/1994	> 4.5
EPRVB3594W Q	N/A	N/A	N/A	N/A	Domestic property (multiple) (incl. farmhouses)	519196	137510	12/09/2022	> 4.5

N/A – Data not available

wsp

wsp.com