

Thakeham Tiles, Rock Road, Storrington Flood Risk Assessment

For *Thakeham Concrete Products Ltd*

Date 13 November 2025

Doc ref 37212-HYD-XX-XX-RP-WENV-0001

Document control sheet

Issued by	Hydrock Consultants Limited Second Floor 172 Edmund Street Birmingham B3 2HB United Kingdom	T +44 (0)121 7525197 E birmingham@hydrock.com hydrock.com
Client	Thakeham Concrete Products Ltd	
Project name	Thakeham Tiles, Rock Road, Storrington	
Title	Flood Risk Assessment	
Doc ref	37212-HYD-XX-XX-RP-WENV-0001	
Project number	37212-WENV	
Status	S2	
Date	13/11/2025	

Document production record		
Issue number	PO3	Name
Prepared by	Daisy Thurlow BSc (Hons)	
Checked by	Alexandros Petrakis BSc (Hons) MCIWEM C.WEM	
Approved by	Connor Henderson BEng (Hons)s	

Document revision record			
Issue number	Status	Date	Revision details
PO1	S2	28/03/2025	First Issue - for comment
PO2	S2	07/04/2025	Second Issue – Updated figure and included geo report
PO3	S2	19/09/2025	Third Issue – Update to Site Layout
PO4	S2	13/11/2025	Fourth Issue – Update as per client comments

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

Contents

1. Introduction	1
2. Existing Site Conditions	2
2.1 <i>Site Location</i>	2
2.2 <i>Topography</i>	3
2.3 <i>Hydrology</i>	3
2.4 <i>Geology and Hydrogeology</i>	3
3. Proposed Development	4
4. Planning Policy	5
4.1 <i>National Planning Policy Framework (Updated February 2025)</i>	5
4.2 <i>EA Flood Map for Planning (March 2025)</i>	6
4.3 <i>Planning Practice Guidance (Updated February 2024)</i>	6
4.4 <i>Environment Agency's (EA) Climate Change Allowances (Updated July 2021)</i>	6
4.5 <i>Horsham District Council Planning Framework (November 2015)</i>	8
4.6 <i>Horsham District Local Plan (2023-2040)</i>	8
4.7 <i>Horsham District Council Level 1 Strategic Flood Risk Assessment (SFRA) (September 2024)</i>	9
5. Sources of Flood Risk	10
5.1 <i>Tidal Flood Risk</i>	10
5.2 <i>Fluvial Flood Risk</i>	10
5.3 <i>Surface Water Flood Risk</i>	11
5.4 <i>Groundwater Flooding</i>	13
5.5 <i>Sewer Flooding</i>	14
5.6 <i>Artificial Sources Flood Risk</i>	14
6. Sequential and Exception Tests	16
6.1 <i>The Sequential Test</i>	16
6.2 <i>The Exception Test</i>	16
7. Conclusions	17

Tables

Table 1: Site Referencing Information	2
Table 2: NPPG Flood Risk Vulnerability and Flood Zone Incompatibility matrix	4
Table 3: Peak River Flow Allowance for the Arun and Western Streams Management Catchment	7
Table 4: Application of the appropriate Climate Change Allowance	7
Table 5: Manual groundwater levels recorded within BH1	13

Figures

Figure 1: Site Location.....	2
Figure 2: EA's Flood Map for Planning	10
Figure 3: EA's Long Term Flood Risk map (Surface Water)	11
Figure 4: NaFRA2 Surface Water Mapping Overlayed Proposed Site Plan	12
Figure 5: EA Reservoir Failure Extent Mapping	15

Appendices

Appendix A	<i>Topographical Survey</i>
Appendix B	<i>Proposed Site Layout</i>
Appendix C	<i>Level 1 SFRA Figure</i>

1. Introduction

Hydrock Consultants Limited (Hydrock), now Stantec, have been commissioned by Thakeham Concrete Products Ltd to undertake a Flood Risk Assessment (FRA), to be submitted in support of a planning application for the proposed development at Rock Road, Storrington, West Sussex.

This report has been completed in accordance with the National Planning Policy Framework (NPPF), updated February 2025, and its accompanying Planning Practice Guidance (PPG), updated February 2024. This report is an assessment of flood risk to the development, from on and off-site sources, and to off-site receptors arising from development at the site.

The report has been prepared to consider the requirements of the NPPF through:

- » Assessing whether the proposed development is likely to be affected by flooding;
- » Assessing whether the proposed development is appropriate in the suggested locations; and
- » Detailing measures necessary to mitigate any flood risk identified; to ensure that the proposed development and occupants would be safe, and that flood risk would not be increased as a result of development.

2. Existing Site Conditions

2.1 Site Location

The site is located at Rock Road, Storrington, West Sussex, approximately 1.5 kilometres (km) north-east of Storrington Town. The site occupies the current operating location of Thakeham Concrete Products Ltd. The manufacturing facility currently comprises predominately hard paved areas, and buildings and structures associated with the existing site use. The site is bounded by Rock Road to the north, with agricultural / pasture use fields beyond; small woodland areas to the northeast and northwest; and residential properties to all other boundaries.

The site address and Ordnance Survey Grid Reference is provided in **Table 1** with the site location shown in **Figure 1**.

Table 1: Site Referencing Information

Site Referencing Information	
Site Address	Rock Road, Storrington, West Sussex, RH20 3AD
Grid Reference	TQ 10391 15037 510391, 115037

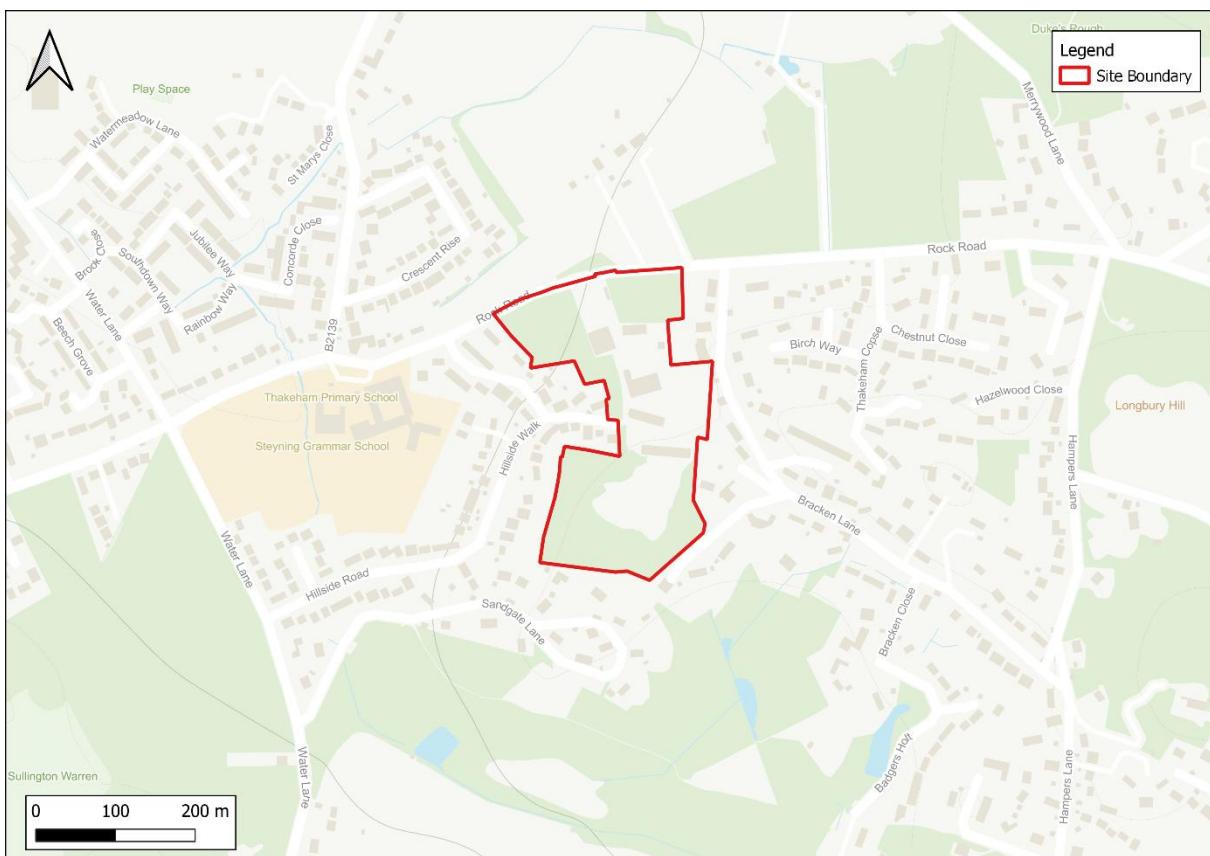


Figure 1: Site Location

2.2 Topography

The site's elevation is shown to vary fairly significantly between 44.84m AOD to highs of 76.06m AOD. The site is shown to have the highest elevations in the south and southeast of the site, which fluctuates towards the centre of the site. In the centre of the site elevations drop from approximately 63m AOD to approximately 58m AOD and continue to drop towards the north of the site. Elevations continue to drop to the north-west of the site where they hit lows of 44.84m AOD.

A Topographical Survey of the site is included in **Appendix A**.

2.3 Hydrology

The site's catchment falls within the Arun and Western Streams Management Catchment with the River Stor, a Main River under Environment Agency (EA) jurisdiction, located approximately 2.2km north-west of the site.

Additionally, there is an unnamed watercourse located approximately 300m west of the site, which is a tributary of the River Stor.

2.4 Geology and Hydrogeology

According to British Geological Survey (BGS)¹ geology mapping [accessed March 2025] the site is underlain by bedrock geology described as Fittleworth Member (Sandstone and Mudstone) in the north and Folkestone Formation (Sandstone) in the south.

The bedrock geology is classified as both a Principal Aquifer and a Secondary A Aquifer across the site according to the Department for Environment, Food & Rural Affairs MAGIC² mapping. A Principal Aquifer is described as a regionally extensive aquifer or aquifer system that has the potential to be used as a source of potable (drinkable) water. A Secondary A Aquifer is described as a permeable layer capable of supporting water supplies at a local scale.

Soilscapes³ mapping, shows the north of the site to be located within 'Freely draining slightly acid loamy soils' and the south of the site within 'Freely draining very acid sandy and loamy soils'.

BGS Historical Borehole⁴ records indicate there are no boreholes located on site. However, a ground investigation has been conducted for the site and this information has been submitted to BGS. The ground investigation is further discussed in Section 5.4.

¹ BGS Geology Viewer (BETA)

² MAGIC (defra.gov.uk)

³ LandIS - Land Information System - Soilscapes soil types viewer

⁴ GeolIndex - British Geological Survey

3. Proposed Development

The development proposals comprise an outline planning application for the demolition of all existing buildings, the erection of 108 dwellings with associated landscaping and open space; and the formation of a new access onto Rock Road. All matters to be reserved, except for means of access. The proposed site layout is presented in **Appendix B**.

The site will have a vulnerability classification of 'more vulnerable' in accordance with *Annex 3: Flood Risk Vulnerability Classification* of the PPG. As the proposed development is located in Flood Zone 1, the development is shown to be appropriate in accordance with *Table 2: Flood risk vulnerability and flood zone 'incompatibility'* of the PPG.

Table 2: NPPG Flood Risk Vulnerability and Flood Zone Incompatibility matrix

	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	✓	✓	✓	✓	✓
Zone 2	✓	Exception Test Required	✓	✓	✓
Zone 3a	Exception Test Required	X	Exception Test Required	✓	✓
Zone 3b	Exception Test Required	X	X	X	✓

4. Planning Policy

4.1 National Planning Policy Framework (Updated February 2025)

The National Planning Policy Framework (NPPF) sets out the Government's planning policies, and how these policies should be applied. Planning Practice Guidance (PPG) is available online and provides additional guidance to the NPPF, as well as providing links to relevant detailed documents. Section 4.2 provides further detail on the PPG.

Paragraph 170 of the NPPF states "inappropriate development in areas at risk of flooding should be avoided by directing development away from areas of highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere."

Paragraph 172 of the NPPF states "All plans should apply a sequential, risk-based approach to the location of development - taking into account all sources of flood risk and the current and future impacts of climate change - so as to avoid, where possible, flood risk to people and property. They should do this, and manage any residual risk by:

- » Applying the sequential test and then, if necessary, the exception test as set out below;
- » Safeguarding land from development that is required, or likely to be required, for current or future flood management;
- » Using opportunities provided by new development and improvements in green and other infrastructure to reduce the causes and impacts of flooding, (making as much use as possible of natural flood management techniques as part of an integrated approach to flood risk management); and
- » where climate change is expected to increase flood risk so that some existing development may not be sustainable in the long-term, seeking opportunities to relocate development, including housing, to more suitable locations.

Paragraph 181 of the NPPF states "when determining planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by site-specific flood-risk assessment. Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

- » Within the site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location;
- » The development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
- » It incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
- » Any residual risk can be safely managed; and
- » Safe access and egress routes are included where appropriate, as part of an agreed emergency plan.

In accordance with the NPPF, a site-specific FRA is required for sites within the following categories:

- » In Flood Zone 1, all proposals involving:

- » Sites of 1 hectare or more.
- » Land which has been identified by the EA as having critical drainage problems.
- » Land identified in a strategic flood risk assessment (SFRA) as being at increased flood risk in the future.
- » Land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.
- » All proposals for development in Flood Zone 2 and 3.

4.2 EA Flood Map for Planning (March 2025)

All land in England is classified as falling into one of three main Flood Zones, with the zones referring to the probability of river or sea flooding, ignoring the existence of defences or increased risk due to climate change. The PPG identifies and describes the EA flood zones as:

- » Flood Zone 1 (Low Risk) comprises land assessed as having a $\leq 0.1\%$ AEP of fluvial flooding in any given year, equivalent to the 1 in 1,000-year return period flood event.
- » Flood Zone 2 (Moderate Risk) comprises land assessed as having a $0.1\%-1\%$ AEP of fluvial flooding in any given year, equivalent to the 1 in 1,000- 1 in 100-year return period flood event.
- » Flood zone 3 (High Risk) comprises land assessed as having a $\geq 1\%$ AEP of fluvial flooding in any given year, equivalent to the ≤ 1 in 100-year return period flood event.
 - » Flood Zone 3 a (High Risk) comprises land assessed as having a $1\text{-}3.33\%$ AEP of fluvial flooding in any given year, equivalent to the 1 in 100 - 1 in 30-year return period flood event.
 - » Flood Zone 3 b (Functional Floodplain) comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the EA. Flood zone 3b is defined as land that has a 3.33% or greater annual probability of flooding, with any existing flood risk management infrastructure operating effectively; or land that is designed to flood (such as a flood attenuation scheme, even if it would only flood in more extreme events).

In addition to the aforementioned Flood Zones, the latest EA mapping includes flood risk model results representing the 3.33% AEP (defended), 1% AEP/0.5% AEP (defended or undefended) and 0.1% AEP (defended or undefended) flood extents, with and without climate change. These results will be referenced in this report where applicable.

4.3 Planning Practice Guidance (Updated February 2024)

The PPG provides additional direction to the NPPF, with details provided in each section of the document on how to conform to the NPPF.

4.4 Environment Agency's (EA) Climate Change Allowances (Updated July 2021)⁵

Climate change allowances for peak river flows in England have been predicted and provided by the EA, covering projections for 'River Basin Districts' and their 'Management Catchments'.

⁵ Flood risk assessments: climate change allowances - GOV.UK (www.gov.uk)

The site's catchment falls within the Arun and Western Streams Management Catchment. **Table 3** identifies the peak flow allowances predicted by the EA for this Management Catchment.

Table 3: Peak River Flow Allowance for the Arun and Western Streams Management Catchment

Allowance Category	Total potential change anticipated for the '2020s' (2015-2039)	Total potential change anticipated for the '2050s' (2040-2069)	Total potential change anticipated for the '2080s' (2070-2115)
Upper End	27%	36%	64%
Higher Central	16%	19%	36%
Central	11%	13%	25%

To determine the appropriate allowance for use in a Flood Risk Assessment, the Flood Zone classification, flood risk vulnerability and anticipated lifespan of the development are to be considered. **Table 4** summarises the EA's guidance on determining this allowance.

Table 4: Application of the appropriate Climate Change Allowance

Flood Zone	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
1					
2	Use the higher central allowance			Use the central allowance	
3a	Use the higher central allowance	Development should not be permitted		Use the central allowance	
3b	Use the higher central allowance		Development should not be permitted		Use the central allowance

If development is considered appropriate by the local authority when not in accordance with Flood Zone vulnerability categories, then it would be appropriate to use the higher central allowance.

According to **Table 4**, the appropriate allowance to use for this site is the 'central allowance'. This is due to the sites classification as 'more vulnerable' in accordance with Annex 3: Flood Risk Vulnerability Classification of the PPG. Due to the residential nature of the proposal, the development will have a lifespan of 100 years. Therefore, a Climate Change Allowance of 25% is deemed appropriate to consider when any calculations or judgements are made in relation to this site.

4.5 Horsham District Council Planning Framework (November 2015)⁶

The Horsham District Planning Framework (HDPF) is the overarching planning document for Horsham district outside the South Downs National Park. This document sets out the planning strategy for the years up to 2031 to deliver the social, economic and environmental needs of the HDPF plan area.

In order to fulfil the vision for the district, a number of key objectives were defined. Objective 11 is '*To safeguard and enhance the environmental quality of the district, ensuring that development maximises opportunities for biodiversity and minimises the impact on environmental quality including air, soil, water quality and the risk of flooding.*'

Policy 38 named '*Flooding*', states that '*Development proposals will follow a sequential approach to flood risk management, giving priority to development sites with the lowest risk of flooding and making required development safe without increasing flood risk elsewhere. Development proposals will:*

- » *take a sequential approach to ensure most vulnerable uses are placed in the lowest risk areas.*
- » *avoid the functional floodplain (Flood zone 3b) except for water-compatible uses and essential infrastructure.*
- » *only be acceptable in Flood Zone 2 and 3 following completion of a sequential test and exceptions test if necessary.*
- » *require a site-specific Flood Risk Assessments for all developments over 1 hectare in Flood Zone 1 and all proposals in Flood Zone 2 and 3.*

4.6 Horsham District Local Plan (2023-2040)⁷

The Horsham District Local Plan 2023-2040 has been prepared as the main planning document for Horsham District, outside the South Downs National Park (SDNP). The aim of the plan is to help bring forward the environmental, social and economic needs for the land in Horsham District that is outside the South Downs National Park. The new Local Plan will cover the period from 2023 to 2040 but considers a longer term context of up to 30 years for strategic scale development.

Chapter 5 '*Climate Change and Water*' identifies issues relating to climate change and flood risk in order to produce the documents policies. Strategic Policy 10 named '*Flooding*', states the same requests from a development proposal as the HDPF above with the addition of:

- » *'consider flood risk at an early stage in deciding the layout and design of the site.*
- » *only be acceptable in Flood Zone 2 and 3 following completion of a sequential test and exceptions test if necessary, using a 1 in 100 annual probability flood level including an appropriate allowance for climate change.*
- » *not result in a net loss of flood storage capacity and not adversely affect flood routing and thereby increase flood risk elsewhere.*
- » *Comply with the tests and recommendations set out in the Horsham District Strategic Flood Risk Assessments (SFRAs).*

⁶ [Horsham District Planning Framework 2015](#)

⁷ [Horsham District Local Plan Regulation 19.pdf](#)

4.7 Horsham District Council Level 1 Strategic Flood Risk Assessment (SFRA) (September 2024)⁸

The Horsham District Council Level 1 SFRA, produced by AECOM, has been reviewed in relation to this site and application.

Only one source of flooding was identified for the town of Storrington within the SFRA. A fluvial flooding event was recorded in June 1981 where the channel capacity of the River Stor exceeded, causing flooding through the centre of Storrington. Information presented within the Level 1 SFRA is assessed and considered further within Section 5 of this report.

⁸ [Horsham Level 1 SFRA](#)

5. Sources of Flood Risk

The NPPF requires flood risk from the following sources to be assessed:

- » Tidal and fluvial sources (sea and river flooding);
- » Pluvial sources (flooding resulting from overland flows);
- » Groundwater sources;
- » Sewer flooding; and
- » Artificial sources, canals, reservoirs etc.

Each of these sources are addressed within this section of the report.

5.1 Tidal Flood Risk

Due to the site's distance from the nearest tidal waterbody and its minimum ground elevation of approximately 44.8m AOD, the risk of tidal flooding is negligible.

5.2 Fluvial Flood Risk

According to the current EA Flood Map for Planning (**Figure 2**), the site is wholly located within Flood Zone 1 (Low Probability).

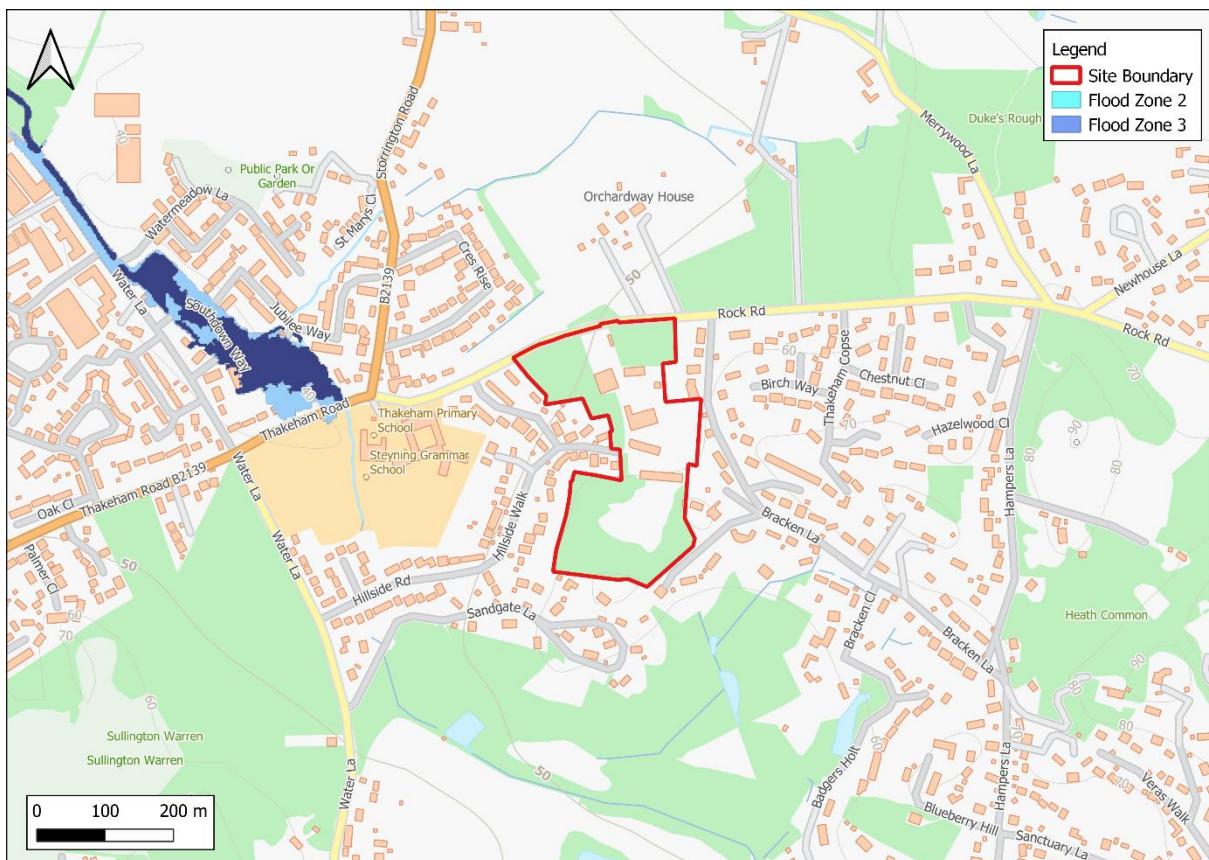


Figure 2: EA's Flood Map for Planning

As noted in **Section 2.3**, the River Stor, a Main River under EA jurisdiction, is located approximately 2.2km north-west of the site. Additionally, there is an unnamed watercourse located approximately 300m west of the site, which is a tributary of the River Stor.

Although there is evidence within the SFRA of a fluvial flood event affecting Storrington in 1981, according to the 'Recorded Flood Outlines' dataset provided by the EA, the site is shown to be outside the extents of historical flooding events.

Therefore, the site is concluded to be at 'low' risk from fluvial flooding.

5.3 Surface Water Flood Risk

Surface water (pluvial) flooding is caused by rainfall levels exceeding the natural infiltration properties of the surrounding soils. Flooding can also occur owing to the absence of a natural method of drainage such as watercourses or ditches, or where soil infiltration rates are low. Flooding often results in ponding of water at low points or when surface water flow routes are blocked by an obstruction.

According to the EA Long Term Flood Risk Map (Surface Water) in **Figure 3**, which has been updated as part of National Flood Risk Assessment 2 (NaFRa2), January 2025, the development site boundary has areas of 'Low' to 'High' risk (0.1%-3.3% annual probability) across the site including climate change allowances. The majority of the potential flooding indicated is shown to comprise isolated 'ponding' or overland flow routes originating from within the site, i.e. as a result of rainfall within the site boundaries, as opposed to off-site generated overland flows being directed into the site from third party land.

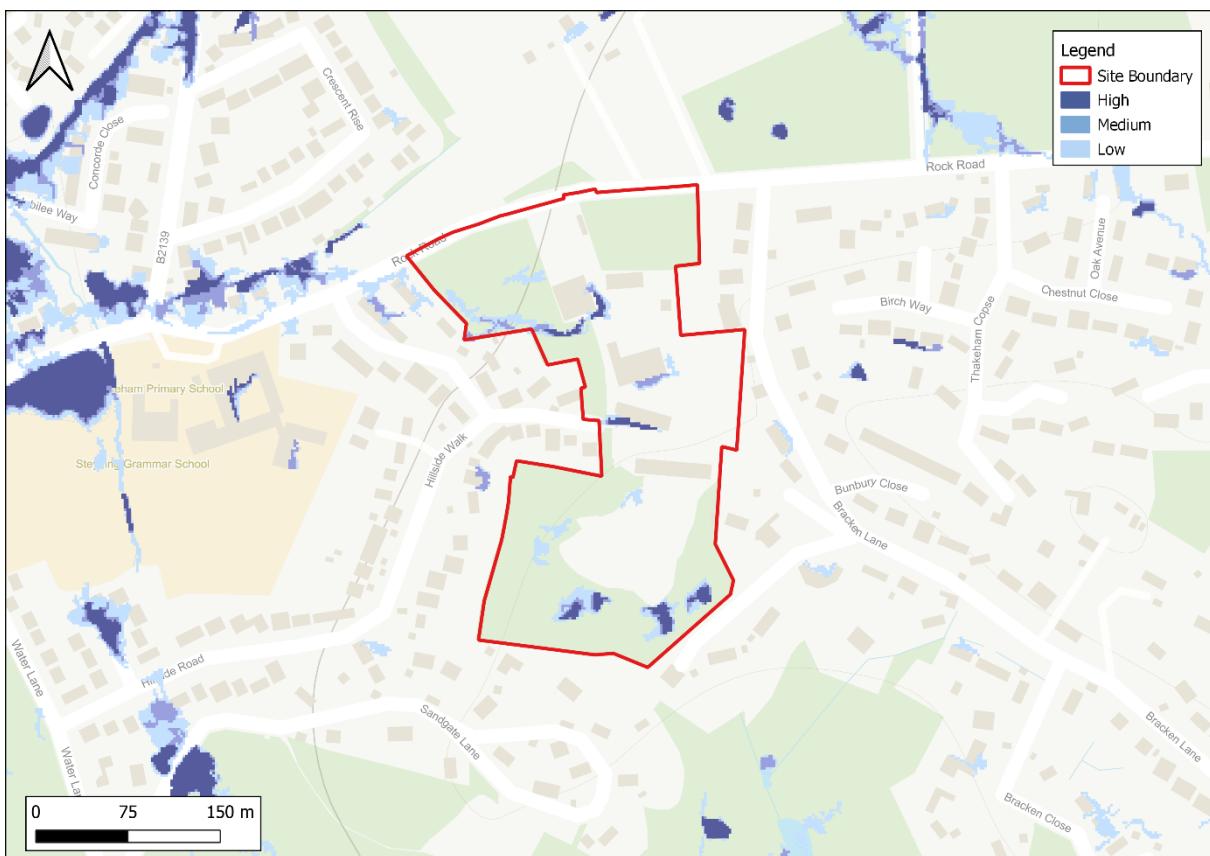


Figure 3: EA's Long Term Flood Risk map (Surface Water)

However, one potential overland flow route is shown to originate off-site and flow into the site approximately north-west of the site boundary. This route corresponds with a low point shown on the Topographical Survey, included in **Appendix A**. However, the overland flow in the north-west of the site is classified as 'low' risk and being <0.2m depth.

Figure 4 shows the proposed layout with the surface water mapping overlayed.

As shown in **Figure 4**, these areas of 'High' risk are very minimal and only interact with the development proposals in the south of the site and centre of the site. These at risk areas are isolated areas of surface water caused by topographic lows that cause ponding. According to the NaFRA2 surface water flood depth mapping, all surface water flood extents evident on site are projected to remain below 0.2m in depth. Additionally, the northern boundary of the site remains flood free which provides safe access and egress to the site.

The built areas of the site will be positively drained and managed within the site specific Drainage Strategy, which will be designed to contain the 1 in 100yr with climate change rainfall event in accordance with the appropriate guidance.

As such, it is considered that the development proposals will be at a 'low' risk of surface water flooding, now and in the future with consideration of climate change.

Figure 4: NaFRA2 Surface Water Mapping Overlayed Proposed Site Plan

5.4 Groundwater Flooding

Groundwater flooding is caused by the emergence of water originating from sub-surface permeable strata. A groundwater flood event results from a rise in groundwater level sufficient for the water table to intersect the ground surface and inundate low lying land. Periods of prolonged rainfall may also be a cause of groundwater flooding, with aquifers and soils becoming saturated.

The EA's Long Term Flood Risk service states that groundwater flooding is "unlikely in this area".

The drainage strategy for the site suggested that there is a relatively high groundwater table in the north after infiltration testing was carried out.

A ground investigation was carried out in September 2024 where an initial groundwater strike was encountered during drilling at 19.8m bgl. Manual groundwater dips taken over two weeks in September recorded groundwater levels between 13.65m to 14.4m bgl. The borehole (BH1) excavated was located in the north of the site, approximately 45m south of Rock Road. The manual groundwater levels recorded at BH1 can be seen in **Table 5**. Seepage was found at 1.25m bgl in August however, the remaining readings were recorded at much deeper levels.

Table 5: Manual groundwater levels recorded within BH1

Date	Depth of groundwater (m bgl)	Time (hh:mm)	Comments
27/08/2024	1.25	11:00	Slow groundwater seepage at base of handpit
11/09/2024	19.8	09:48	Initial strike during drilling. Rose to 12.25m bgl after 40 minutes
11/09/2024	14.40	17:30	-
12/09/2024	14.40	08:00	-
12/09/2024	13.65	17:30	-
13/09/2024	14.20	08:00	-
23/09/2024	14.37	11:00	Pumping test set up and test equipment
24/09/2024	14.42	08:00	Start of step test
24/09/2024	14.43	16:00	Start of constant rate test
24/09/2024	14.425	08:00	Middle of constant rate test

It should be noted that the ground investigation carried out was related to groundwater from an aquifer that is not hydraulically connected to the surface water bodies at the site.

Whilst such generally permeable geology could be conducive to groundwater emergence, given the presence of lower lying ground to the northwest of the site (where any groundwater emergence will preferentially occur or move towards) combined with the absence of recorded

groundwater flooding incidents within the SFRA, the site is concluded to be at a 'low' risk of groundwater flooding.

5.5 Sewer Flooding

Flooding can occur owing to the failure of existing foul or surface water drainage infrastructure. If flows within the drainage system exceed the designed capacity or foreign matter causes blockages, overflow to the surface can occur, leading to flooding.

Although Storrington was not noted as having experienced any sewer flooding within the SFRA, a figure showing the number of sewer flooding incidents by postcode, using Southern Water data, locates the RH20 postcode as experiencing 41-120 incidents between 2014-2024. However, this figure shown in **Appendix C**, shows a very large area for the postcode and does not accurately represent sewer flooding risk at the site. Additionally, the sewer network will be replaced and designed to accommodate flows from the proposed development. Therefore, the risk of sewer flooding onsite will be reduced.

Due to the elevation of surrounding land to the east and northeast being lower than that of the site, it is considered to be at a 'low' risk of sewer flooding.

5.6 Artificial Sources Flood Risk

Failures and overtopping of reservoirs and navigable water bodies, and failure of water mains, constitute the primary means of flooding from artificial sources.

The EA Reservoir Failure Extent mapping (**Figure 5**) shows the site to lie outside of the extents of potential reservoir flooding. In addition, the EA state that reservoir flooding is extremely unlikely to happen. All large reservoirs must be inspected and supervised by reservoir panel engineers. As the enforcement authority for the Reservoirs Act 1975 in England, the EA ensure that reservoirs are inspected regularly, and essential safety work is carried out.

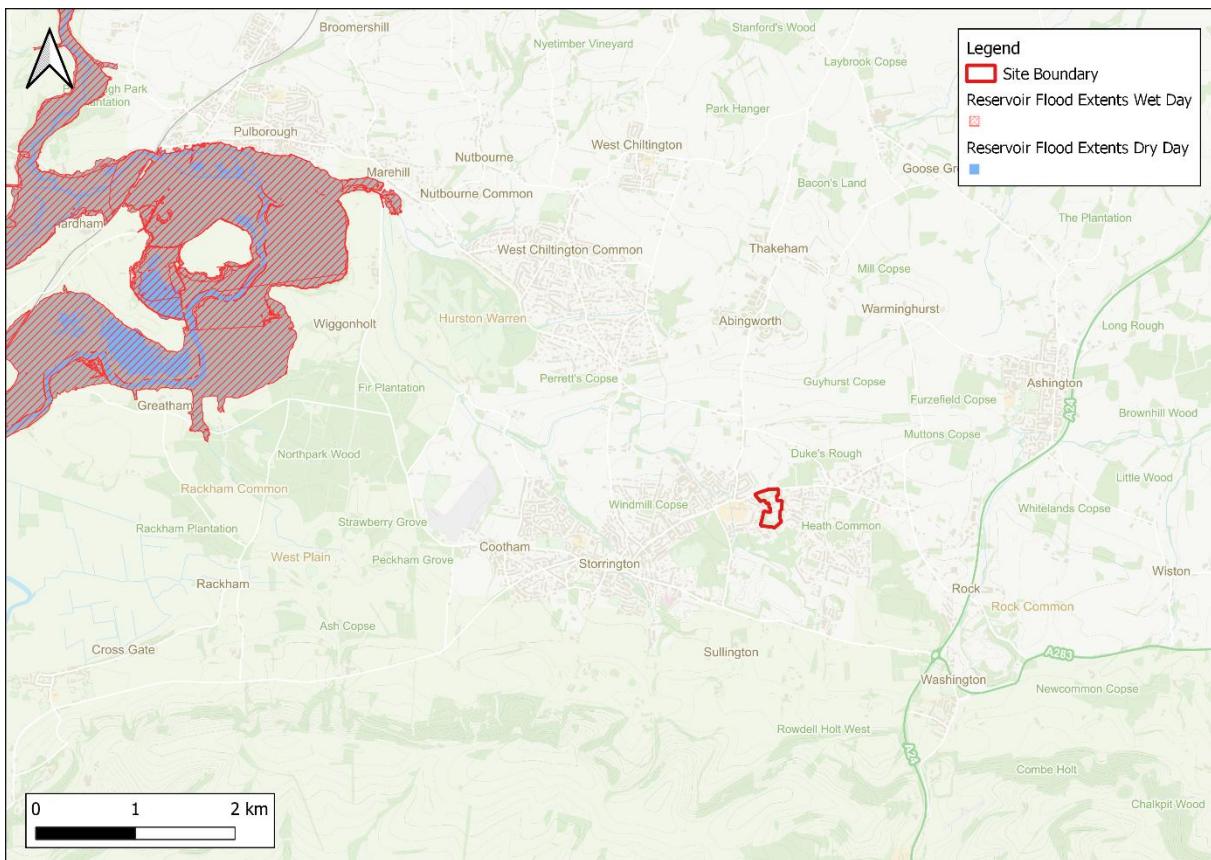


Figure 5: EA Reservoir Failure Extent Mapping

There are no other manmade waterbodies in the vicinity of the site, therefore, the risk to the site from artificial sources of flood risk is considered to be 'low'.

6. Sequential and Exception Tests

6.1 The Sequential Test

The NPPF requires that a sequential, risk-based approach is followed to steer new developments to areas with the lowest probability of flooding (i.e. Flood Zone 1, then 2, then 3).

The site is located within Flood Zone 1 and is therefore classified as having a 'low' risk of flooding from tidal and/or fluvial sources. The site is considered to be at low risk of flooding from groundwater flooding, sewer flooding and artificial sources of flood risk.

Any risk shown by the NaFRA2 surface water flood mapping relates to isolated areas of surface water caused by topographic lows, creating ponding. These will be managed by the reprofiling of the site and associated Drainage Strategy. The flood risk from surface water to the proposed access/egress route is very low.

Considering the above, a Sequential Test is not required.

6.2 The Exception Test

The Exception Test is used where no suitable development areas can be found in low-risk areas, the risk of flooding is clearly outweighed by other sustainability factors, and the development will be safe for its lifetime, taking climate change into account. Paragraph 178 of the NPPF states that for the Exception Test to be passed:

- » It must be demonstrated that the development provides wider sustainability benefits to the community that outweigh the flood risk, informed by a Strategic Flood Risk Assessment where one has been prepared; and
- » A site-specific flood risk assessment must demonstrate that the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

As the site is located within Flood Zone 1 and has a flood risk vulnerability classification of 'Less Vulnerable', in accordance with the '*NPPG Flood Risk Vulnerability and Flood Zone Incompatibility matrix*' (Table 2 of this report), the Exception Test is not required for the site.

7. Conclusions

Hydrock Consultants Limited (Hydrock), now Stantec, have been commissioned by Thakeham Concrete Products Ltd to undertake a FRA, to be submitted in support of a planning application for the proposed development at Thakeham Tiles, Rock Road.

The site is located within Flood Zone 1 and is therefore classified as having a 'low' risk of flooding from tidal and/or fluvial sources. The site is considered to be at low risk of flooding from groundwater flooding, sewer flooding and artificial sources of flood risk.

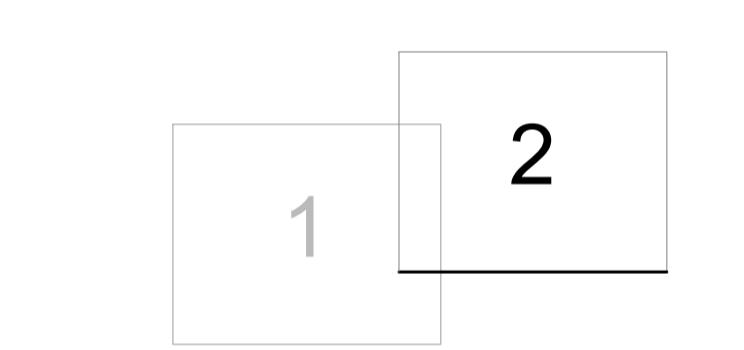
Any risk shown by the NaFRA2 surface water flood mapping relates to isolated areas of surface water caused by topographic lows, creating ponding. These will be managed by the reprofiling of the site and associated Drainage Strategy. The flood risk from surface water to the proposed access/egress route is very low.

This report therefore demonstrates that, in respect to flood risk, the proposed development:

- » Is suitable in the location proposed;
- » Will be adequately flood resistant and resilient;
- » Will not place additional persons at risk of flooding;
- » Will not increase flood risk elsewhere as a result of the proposed development through the loss of floodplain storage or impedance of flood flows; and
- » Will put in place measures to ensure surface water is appropriately managed.

This report concludes that in flood risk context, the proposals are safe and appropriate and do not increase flood risk.

Appendix A *Topographical Survey*


Notes:

1. TOPOGRAPHICAL INFORMATION ADDED TO TOPOGRAPHICAL SURVEY PRODUCED BY MK SURVEYS. JOB No. 22664. DATE 07/2016. NO SITE VERIFICATION CARRIED OUT BY MK SURVEYS UNLESS SPECIFIC TO THE JOB.
2. TREE AND HEDGE SPECIES HAVE BEEN IDENTIFIED AS ACCURATELY AS POSSIBLE BUT SHOULD BE CROSS CHECKED IN CRITICAL AREAS.

TOPOGRAPHICAL KEY

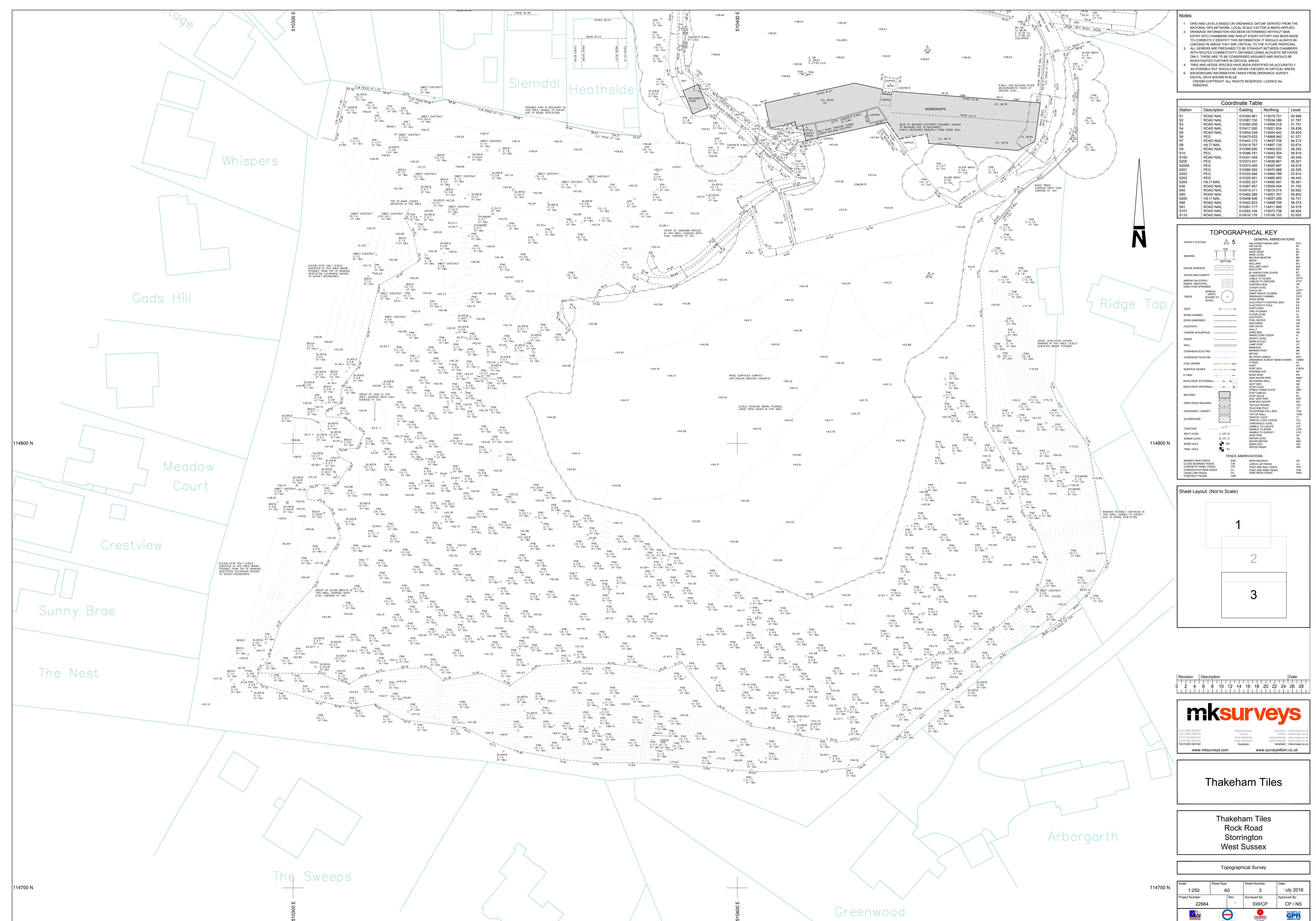
SURVEY STATION		5	GENERAL ABBREVIATIONS	
BANKING			AIR CONDITIONING UNIT	ACU
HEDGE SPREADS			AIR VALVE	AV
WOODLAND CANOPY			AVERAGE	Av.
ARROW ON STEPS / RAMPS INDICATES DIRECTION UPWARDS			BACK DROP	BD
TREES	SPREAD & GIRTH SHOWN TO SCALE		BASE LEVEL	BL
GATE			BELISHA BEACON	BB
KERB CHANNEL			BOLLARD	BO
ROAD UNKERBED			BOLLARD LIGHT	BOL
FOOTPATH			BRICK	BK
CHANGE IN SURFACE			BUS STOP	BS
FENCE			CABLE RISER	CR
WALL			CABLE TV COVER	CATV
OVERHEAD ELECTRIC			CABLES TO GROUND	CTG
OVERHEAD TELECOM			CATCH PIT	CP
FOUL SEWER			CONTROL BOX	CB
SURFACE SEWER			COVER LEVEL	CL
P-TRAP			CROSSING CONTROL BUTTON	CCB
BACK DROP (EXTERNAL)			DAMP PROOF COURSE	DPC
BACK DROP (INTERNAL)			DRAINAGE CHANNEL	DCH
BUILDING			DROP KERB	DK
OPEN SIDED BUILDING			ELECTRICITY POLE	EP
OVERHANG / CANOPY			EARTH ROD	ER
GLASSHOUSE			FIRE HYDRANT	FH
CONTOUR	25.50		FLOOR LEVEL	FL
SPOT LEVEL	+ 127.13		FOOTPATH	FP
SONAR LEVEL	0 127.13		FOUL WATER	FW
BORE HOLE		BH	GAS RISER	GR
TRIAL HOLE		TH	GAS VALVE	GV
FENCE ABBREVIATIONS				
BARBED WIRE FENCE	B/W		IRON RAILINGS	I/R
CLOSE BOARDED FENCE	C/B		LARCH LAP FENCE	L/L
CONCRETE PANEL FENCE	CPL		POST AND RAIL FENCE	P/R
CORRUGATED IRON FENCE	C/I		POST AND WIRE FENCE	P/W
CHAIN LINK FENCE	C/L		WIRE MESH FENCE	W/M
CHESTNUT PALING	CNP			

SHEET LAYOUT (not to scale):

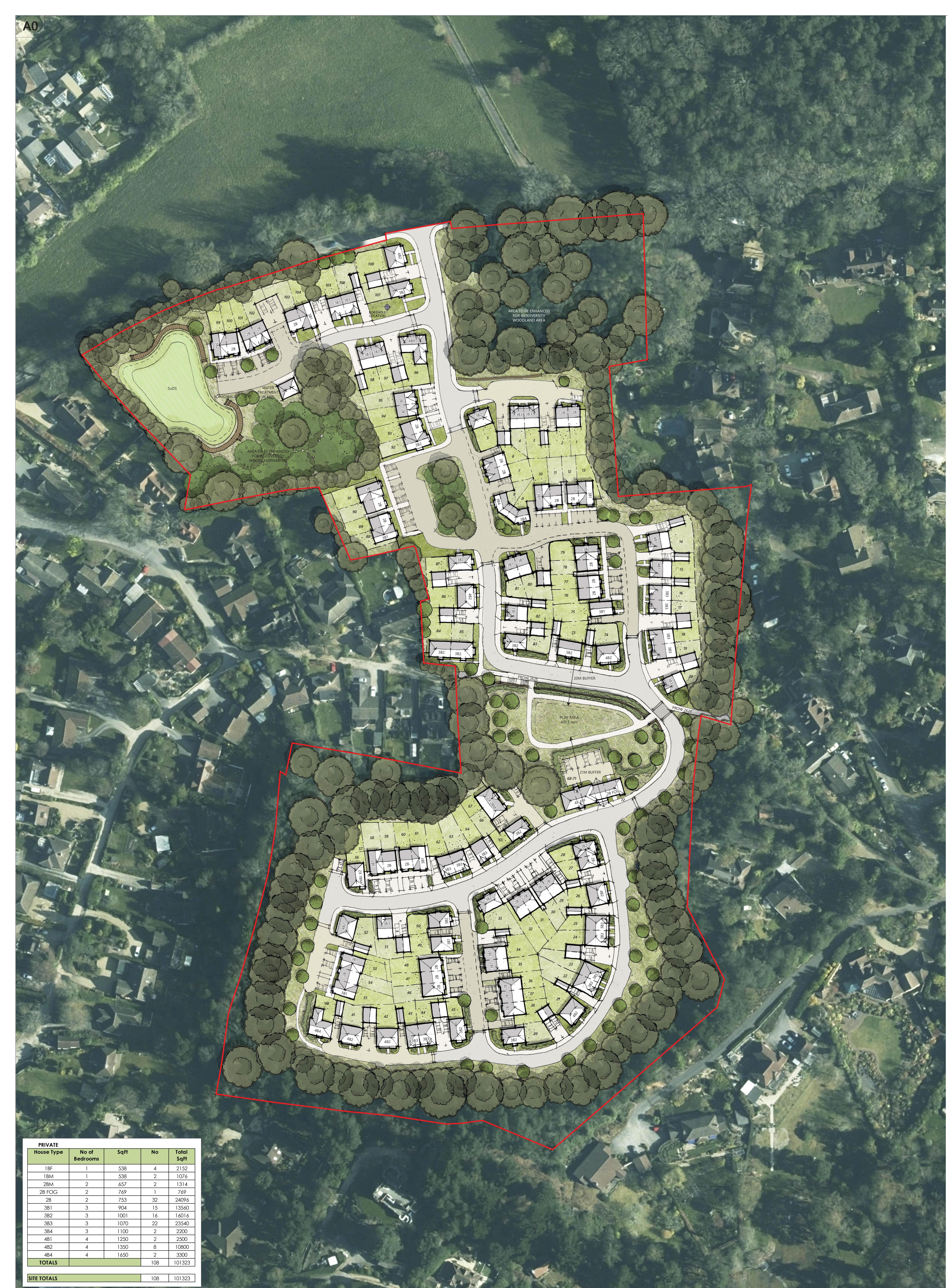
Revision	Description	Surv. by	Check. by	Appr. by	Date
2	4	6	8	10	12
14	16	18	20	22	

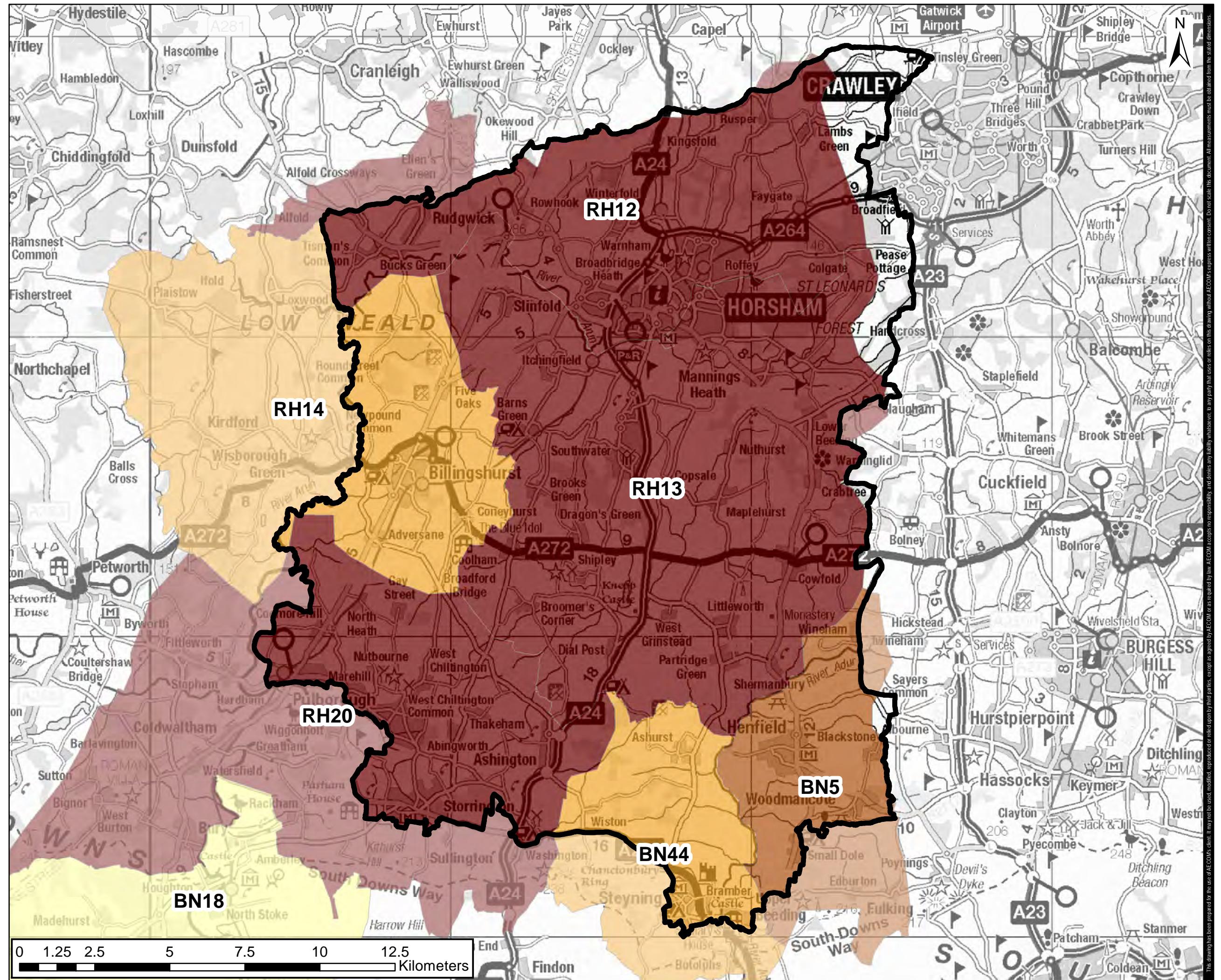
Topographical Survey

Client: **Thakeham Concrete Products Ltd**


Rock Road
Storrington
West Sussex

Scale: 1:200	Sheet Size: A1	Sheet Number: 2	Date: February 2023
Project Number: 32301	Rev: -	Surveyed by: JM	Checked by: AJ
		Approved by: NS	


mksurveys



Appendix B *Proposed Site Layout*

Appendix C

Level 1 SFRA Figure

AECOM

PROJECT
Horsham District Council
Level 1 Strategic Flood Risk
Assessment

CLIENT
Horsham District Council

CONSULTANT
AECOM Limited
3rd Floor Portwall Place
Portwall Lane
Bristol, United Kingdom
T +44 (0)117 315 0700

LEGEND
Horsham District Boundary

No. of sewer flooding incidents
by postcode

2 - 10
11 - 20
21 - 30
31 - 40
41 - 120

NOTES
1: Southern Water have provided records of sewer flooding incidents in the Horsham District Council area over the 10 year period 2014-2024. For confidentiality reasons, the records have been reported at the postal district level, as reflected in the figure here.

Postal Boundaries © GeoLytx copyright and database right 2012 Contains Ordnance Survey data © Crown copyright and database right 2023. All rights reserved. Licence number 0100031673.

ISSUE PURPOSE

FINAL

PROJECT NUMBER

60730513

FIGURE TITLE

Sewer Flooding Incidents (2014-2024)

FIGURE NUMBER

Figure A5