

Drainage Strategy

7657_RH20_Pickhurst Lane_07

aegaea

water, civils and environment

Site Address: Land West of Parsons Field Stables

Pickhurst Lane

Pulborough

RH20 1DA

UK Experts in Flood Modelling, Flood Risk
Assessments, and Surface Water Drainage Strategies

aegaea

water, civils and environment

Document Issue Record

Project: Drainage Strategy

Prepared for: Manorwood Construction Limited

Reference: 7657_RH20_Pickhurst Lane_07

Site Location: Land West of Parsons Field Stables, Pickhurst Lane, Pulborough, RH20 1DA

Issue	Date	Author	Check	Auth.	Comments
1	28/04/2025	Ceri Metcalfe	Daniel Buciak	James Mahoney	First issue
2	02/05/2025	Ceri Metcalfe	Daniel Buciak	James Mahoney	Amended site layout
3	04/07/2025	Ceri Metcalfe	Daniel Buciak	James Mahoney	Amended site layout
4	22/08/2025	Ceri Metcalfe	Daniel Buciak	James Mahoney	Amended site layout
5	21/10/2025	Ceri Metcalfe	Daniel Buciak	James Mahoney	Strategy updated to suit latest layout

Please Note:

This report has been prepared for the exclusive use of the commissioning party and may not be reproduced without prior written permission from Aegaea Civil Engineering Limited. All work has been carried out within the terms of the brief using all reasonable skill, care, and diligence. No liability is accepted by Aegaea Civil Engineering Limited for the accuracy of data or opinions provided by others in the preparation of this report, or for any use of this report other than for the purpose for which it was produced. Where reference has been made to probability events, or risk probability, it does not ensure that there is no risk or that there is no residual risk from an extreme, unlikely or unforeseen flood event over the lifetime of the development.

Table of Contents

1. Introduction.....	1
Site Overview.....	1
Development Proposals.....	2
Ground Conditions	3
2. Surface Water Drainage Strategy.....	4
Existing Drainage System	4
Proposed Drainage Hierarchy	4
Runoff Rates.....	5
Proposed Drainage Strategy	6
3. Future Maintenance Strategy	7
Permeable Paving	8
4. Pollution Prevention & Water Quality Management.....	11
SuDS Mitigation Indices.....	11
5. Foul Drainage Strategy	12
Appendix A - Topographical Survey	13
Appendix B - Proposed Site Layout.....	14
Appendix C - Proposed Drainage Layout	15
Appendix D - Drainage Calculations	16
Appendix E - Southern Water Asset Mapping	17

1. Introduction

1.1. Aegaea were commissioned by the Client to prepare a Drainage Strategy to support a planning application associated with the proposed development at the below address.

Site Overview

1.2. The site of the proposed development is Land West of Parsons Field Stables, Pickhurst Lane, Pulborough, RH20 1DA.

Figure 1: Site Location

1.3. The proposed development site measures approximately 5,920m² (0.592ha), situated and accessed from Pickhurst Lane to the north of the site.

1.4. The topographical survey is included in Appendix A, which illustrates that existing site levels vary between 22.869m Above Ordnance Datum (AOD) north of the site and 18.700m AOD to the south.

- 1.5. Horsham District Council is the Local Planning Authority (LPA) for the site and West Sussex County Council is the designated Lead Local Flood Authority (LLFA).
- 1.6. Southern Water are the Sewerage Undertaker for the area.

Development Proposals

- 1.7. The proposed development comprises of stationing of 2 static caravans for residential purposes and associated day rooms with the formation of hardstanding and associated landscaping.
- 1.8. The proposed development layout can be seen in Figure 2 below and is contained within Appendix B.

Figure 2: Proposed Site Plan

Ground Conditions

- 1.9. A review of readily available information indicates that the site is in an area of slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils with impeded drainage (Soilscapes soil types viewer). British Geological Survey (BGS) data indicates that the bedrock underlying the site is Weald Clay Formation.
- 1.10. Based on the above, it is considered that the disposal of surface water via infiltration is not feasible and an alternative strategy in line with the SuDS hierarchy is to be sought.

2. Surface Water Drainage Strategy

Existing Drainage System

2.1. No information regarding the existing onsite drainage system has been provided, however, it is assumed that surface water drainage currently discharges via gravity to the ditch located along the southern site boundary.

Proposed Drainage Hierarchy

2.2. Current guidance indicates that the following surface water disposal options should be considered, listed in order of preference:

- i. **Disposal via on-site infiltration systems:** As mentioned above, infiltration has been discounted due to unfavourable ground condition.
- ii. **Disposal to a watercourse/surface water body:** There is an existing drainage ditch that runs along the southern boundary of the site which it is proposed that surface water flows are to discharge to.
- iii. **Disposal to surface water sewer:** There are no public surface water sewers within the proximity of the proposed development.
- iv. **Disposal to combined sewer:** There are no public surface water sewers within the proximity of the proposed development.

2.3. In accordance with the SuDS hierarchy, it is proposed that surface water flows from roof areas are to be re-used within a rainwater harvesting system. The remaining of the developments surface water flows and any overflows from the rainwater harvesting systems are to discharge at a controlled rate into the existing ditch along the southern site boundary.

Runoff Rates

2.4. An assessment of greenfield runoff rates based on the proposed development drainage catchment areas (circa 395m²) was made using the pre-development calculator in Causeway Flow software based on the input parameters shown in Figure 3 below.

Pre-development discharge

Site Makeup	Greenfield	
Greenfield Method	IH124	
Positively Drained Area (ha)	0.039	
SAAR (mm)	845	
Soil Index	4	
SPR	0.47	
Region	7	
Betterment (%)	0	
<input type="button" value="Load"/>		
<input type="button" value="Calc"/>		
QBar (l/s)	0.2	
Return Period (years)	Growth Factor	Q (l/s)
1	0.85	0.2
30	2.40	0.6
100	3.19	0.7

Figure 3: Extract from Causeway Flow Greenfield Runoff Rate Calculator

2.5. The greenfield runoff rates for the proposed development site are set out in the Table 1 below.

Return Period	Greenfield Runoff Rate
Q_{BAR}	0.2 l/s
1 in 1 Year	0.2 l/s
1 in 30 Year	0.6 l/s
1 in 100 Year	0.7 l/s

Table 1: Greenfield Runoff Rates

2.6. The table above shows that due to the small nature of the proposed development and the associated soil class type, greenfield runoff rates are extremely low.

2.7. Where a site is below 1ha and greenfield runoff rates are low, it is considered that 1 l/s forms a practical minimum flow rate that balances and mitigates both the increased flood risk and blockage risk to the proposed drainage system. It is therefore proposed to restrict flows to 1 l/s as an appropriate minimum flow for small sites.

Proposed Drainage Strategy

- 2.8. The use of porous surface for hardstanding areas is proposed to filter water and improve water quality of surface water flows arising from these hardstanding areas. These areas will not be positively drained and would therefore drain as in the pre-development scenario i.e. no change/increase to impermeable areas within its extents
- 2.9. For the proposed development roof areas the strategy will comprise of geocellular attenuation tank proposed to attenuate flows prior to discharging at a controlled rate into an existing ditch running along the southern site boundary.
- 2.10. All on site drainage has been designed to accommodate surface water runoff including all modelled 1 in 100-year storms plus 45% climate change and 10% urban creep.
- 2.11. The contractor is to consider methods of drainage installation that avoids the loss of existing trees and mitigates existing tree roots wherever possible, i.e. vacuum excavator/airspade, trenchless techniques, etc. If alternative/optimised routes are identified on site this should be reported back to the engineer.
- 2.12. The proposed drainage layout can be found within Appendix C with supporting drainage calculations can be found in Appendix D.

3. Future Maintenance Strategy

General Maintenance

- 3.1. The surface water drainage network will be managed throughout the lifetime by the owners of the proposed development in accordance with details set out below.
- 3.2. All drainage, whether piped or SuDS require regular maintenance. The tables below provide an overview of general maintenance tasks and frequency of which they need to be undertaken.

Maintenance Schedule	Required Action	Typical frequency
Regular Maintenance	Inspect for sediment and debris in catchpit manholes and gullies. Clean out as required	Twice Annually
	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)
	Trimming any roots that may be causing blockages	Annually (or as required)
Occasional Maintenance	Remove sediment and debris in catchpits, gullies, attenuation devices and inside concrete manhole rings.	As required, based on inspections.
Remedial actions	Reconstruct and/or replace components, if performance deteriorates or failure/blockage occurs.	As required
	Replacement of clogged components (flow restriction)	As required
Monitoring	Inspect silt traps/gullies/catchpits and note rate of sediment accumulation.	Monthly in the first year and then annually
	Check attenuation devices	Annually

General maintenance for Surface Water Drainage Systems as per CIRIA C753.

- 3.3. The required maintenance for each component making up the drainage system is scheduled in the tables below, based on CIRIA report C753 – The SuDS manual.

Permeable Paving

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Regular raking to ensure even spread and smooth surface, may require additional top up.	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment.
Occasional Maintenance	Stabilise and mow contributing and adjacent areas	As required
	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying.	As required – once per year on less frequently used pavements
Remedial Maintenance	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving.	As required
	Remediate work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material.	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action.	Three-monthly, 48 hr after large storms in the first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Cellular attenuation tank

Maintenance Schedule	Required Action	Typical frequency
Regular Maintenance	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	Annually
	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)
	Trimming any roots that may be causing blockages	Annually (or as required)
Occasional Maintenance	Remove sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	As required, based on inspections.
Remedial actions	Reconstruct tank and/or replace or clean void fill, if performance deteriorates or failure occurs	As required
	Replacement of clogged geotextile (will require reconstruction of tank)	As required
Monitoring	Inspect silt traps and note rate of sediment accumulation.	Monthly in the first year and then annually
	Check tank to ensure emptying is occurring	Annually

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment/debris removal for large systems. If maintenance is not undertaken for long periods, deposits can become hard packed and require considerable effort to remove.

Orifice Plate (Flow Control)

Maintenance Schedule	Required Action	Typical frequency
Regular Maintenance	<p>Remove sediment and debris from flow control chambers and upstream manholes.</p> <p>Check for signs of damage, wear and tear.</p> <p>Check any visible fixing bolts.</p>	Monthly (for the first 12 months, then 6 monthly).
Remedial Actions	<p>Clean or replace orifice plate if defects are located or, if performance deteriorates or failure occurs.</p> <p>In the event of the blockage, the blockage/foreign material should be manually removed</p>	As necessary.
Monitoring	Check flow control to ensure emptying is occurring.	Quarterly and post high intensity storm event.

Headwalls (inlets and outlets)

Maintenance Schedule	Required Action	Typical frequency
Regular Maintenance	Inspect inlets, outlets for blockages and clear if required	Monthly (for the first 12 months, then 6 monthly).
	Check for signs of damage, erosion of banks or scour.	
	Inspect structural integrity of head wall structure	
	Check integrity of metal work and replace when needed.	
Occasional Maintenance	In the event of the blockage, the blockage/foreign material should be manually removed	Annual/bi-annual visual checks are basic recommendation
	Galvanised Grates and Handrails	
Remedial Actions	In the event of damage, erosion of banks or scour, rehabilitate as required.	As required
	Repair/rehabilitation of inlets/outlets/overflows	As required
	Re-level uneven surfaces and reinstate design levels	As required

4. Pollution Prevention & Water Quality Management

SuDS Mitigation Indices

- 4.1. Chapter 26 of the CIRIA C753 The SuDS Manual, provides design advice to meet water quality standards by adopting the SuDS train treatment mechanism and thereby reduce the risk of pollution by evaluating potential pollution hazards at the outset.
- 4.2. The proposed site layout provides the opportunity to introduce SuDS into the scheme to reduce potential contaminant risk further.
- 4.3. Runoff from individual property driveways, residential car parks and low traffic roads are generally viewed as low risk (as per Table 26.2 of C753), shown in the tables below.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Individual property driveways, residential car parks and low traffic roads	Low	0.5	0.4	0.4

Pollutant Hazard Indices

	Mitigation Indices				Indices for Calculation		
	TSS	Metals	Hydrocarbons		TSS	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7	100%	0.7	0.6	0.7
Total Mitigation Indices score					0.7	0.6	0.7
Sufficiency of Pollution Mitigation Indices					Sufficient (No additional mitigation required)		

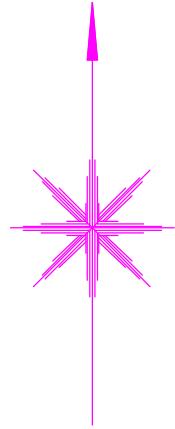
SuDS Mitigation Indices

- 4.4. The mitigation indices offered by the proposed SuDS features exceed the hazard indices from roof areas and therefore provides adequate mitigation. It is therefore considered that the proposed SuDS features on site are appropriate and acceptable in terms of water quality.

5. Foul Drainage Strategy

- 5.1. There are no public foul sewers within the vicinity of the site. Southern Water Asset Mapping is included within Appendix E.
- 5.2. Discharge to ground, i.e. drainage field, has been discounted due to the above information deeming infiltration techniques unfeasible for the site.
- 5.3. Based on the above information it is therefore proposed that foul flows from the proposed development are directed to a package treatment plant, prior to the treated flows discharging into the existing ditch located along the southern boundary of the site. Subject to relevant approvals.
- 5.4. It is proposed that the stable washdown areas are to discharge to onsite cesspools, capacity of the cesspool tanks will be dependent on frequency of use and is subject to detailed design.

Appendix A - Topographical Survey



NOTES
 Survey accurate at time of site attendance. Do not scale from printed drawings except for planning purposes.
 Although this is a digital survey the accuracy and amount of detail shown is only commensurate with the graphical scale of mapping as specified. Care should be exercised when working to larger scales.

ORDNANCE MAP
 Ordnance Survey, (c) Crown Copyright 2025. All rights reserved. Licence number 100022432

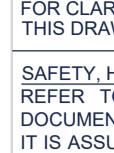
National Grid 1:2500 (Accuracy data) Surveying tolerances:
 Distances up to 200 metres ± 1 in 100m
 Distances 200 to 1,000 metres ± 2 m
 Distances over 1,000 metres ± 1 in 500m

0 5 10 15 20
SCALE 1:500

Appendix B - Proposed Site Layout

Access on to road to be bound material. Works to be subject of a minor works licence

This document is the copyright of Promethean Planning Ltd for use for planning purposes in the United Kingdom only, without breach of copyright.
Do not circulate. For the following allow for a 50% buffer if any of the dimensions are to be used for planning purposes.
All dimensions must be checked on site prior to commencement of works.
Complaints: Design and Management Regulation 2015
This document is intended for Planning purposes only. It is not a formal design or building regulation design related document.
This information can be provided on request however it is anticipated that the information will be required for the identification of the detailed Building Regulation or construction design standards and not for construction works commencing on site.
All representations and plans in the above application now revert to the client after Promethean Planning are given notice of the grant of planning permission or commencement of works.


PROMETHEAN
PLANNING LTD

State 114
26 The Hermit
Hawthorn
PS19 7BB
tel: 01243 201 052
email: enquiry@prometheanplanning.co.uk
web: www.prometheanplanning.co.uk

Address:
Land West Of Phoenix Field
Stables Pitch Lane,
Pilbrough, West Sussex, RH10
1DA
Drawing No. 25/TP/002
Scale @ A2 As Indicated
Job No. 25/TP
Drawn By MD
Checked By HK
Drawn On 08/10/2025
Issued On 09/10/2025
Status Existing / Proposed
Drawing Block-Plans
Submission Planning
Revision 004
Page 1 of 1

Indication: 0.00
50 100 150 200 250 300 350 400
500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000 4050 4100 4150 4200 4250 4300 4350 4400 4450 4500 4550 4600 4650 4700 4750 4800 4850 4900 4950 5000 5050 5100 5150 5200 5250 5300 5350 5400 5450 5500 5550 5600 5650 5700 5750 5800 5850 5900 5950 6000 6050 6100 6150 6200 6250 6300 6350 6400 6450 6500 6550 6600 6650 6700 6750 6800 6850 6900 6950 7000 7050 7100 7150 7200 7250 7300 7350 7400 7450 7500 7550 7600 7650 7700 7750 7800 7850 7900 7950 8000 8050 8100 8150 8200 8250 8300 8350 8400 8450 8500 8550 8600 8650 8700 8750 8800 8850 8900 8950 9000 9050 9100 9150 9200 9250 9300 9350 9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900 9950 10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500 10550 10600 10650 10700 10750 10800 10850 10900 10950 11000 11050 11100 11150 11200 11250 11300 11350 11400 11450 11500 11550 11600 11650 11700 11750 11800 11850 11900 11950 12000 12050 12100 12150 12200 12250 12300 12350 12400 12450 12500 12550 12600 12650 12700 12750 12800 12850 12900 12950 13000 13050 13100 13150 13200 13250 13300 13350 13400 13450 13500 13550 13600 13650 13700 13750 13800 13850 13900 13950 14000 14050 14100 14150 14200 14250 14300 14350 14400 14450 14500 14550 14600 14650 14700 14750 14800 14850 14900 14950 15000 15050 15100 15150 15200 15250 15300 15350 15400 15450 15500 15550 15600 15650 15700 15750 15800 15850 15900 15950 16000 16050 16100 16150 16200 16250 16300 16350 16400 16450 16500 16550 16600 16650 16700 16750 16800 16850 16900 16950 17000 17050 17100 17150 17200 17250 17300 17350 17400 17450 17500 17550 17600 17650 17700 17750 17800 17850 17900 17950 18000 18050 18100 18150 18200 18250 18300 18350 18400 18450 18500 18550 18600 18650 18700 18750 18800 18850 18900 18950 19000 19050 19100 19150 19200 19250 19300 19350 19400 19450 19500 19550 19600 19650 19700 19750 19800 19850 19900 19950 20000 20050 20100 20150 20200 20250 20300 20350 20400 20450 20500 20550 20600 20650 20700 20750 20800 20850 20900 20950 21000 21050 21100 21150 21200 21250 21300 21350 21400 21450 21500 21550 21600 21650 21700 21750 21800 21850 21900 21950 22000 22050 22100 22150 22200 22250 22300 22350 22400 22450 22500 22550 22600 22650 22700 22750 22800 22850 22900 22950 23000 23050 23100 23150 23200 23250 23300 23350 23400 23450 23500 23550 23600 23650 23700 23750 23800 23850 23900 23950 24000 24050 24100 24150 24200 24250 24300 24350 24400 24450 24500 24550 24600 24650 24700 24750 24800 24850 24900 24950 25000 25050 25100 25150 25200 25250 25300 25350 25400 25450 25500 25550 25600 25650 25700 25750 25800 25850 25900 25950 26000 26050 26100 26150 26200 26250 26300 26350 26400 26450 26500 26550 26600 26650 26700 26750 26800 26850 26900 26950 27000 27050 27100 27150 27200 27250 27300 27350 27400 27450 27500 27550 27600 27650 27700 27750 27800 27850 27900 27950 28000 28050 28100 28150 28200 28250 28300 28350 28400 28450 28500 28550 28600 28650 28700 28750 28800 28850 28900 28950 29000 29050 29100 29150 29200 29250 29300 29350 29400 29450 29500 29550 29600 29650 29700 29750 29800 29850 29900 29950 30000 30050 30100 30150 30200 30250 30300 30350 30400 30450 30500 30550 30600 30650 30700 30750 30800 30850 30900 30950 31000 31050 31100 31150 31200 31250 31300 31350 31400 31450 31500 31550 31600 31650 31700 31750 31800 31850 31900 31950 32000 32050 32100 32150 32200 32250 32300 32350 32400 32450 32500 32550 32600 32650 32700 32750 32800 32850 32900 32950 33000 33050 33100 33150 33200 33250 33300 33350 33400 33450 33500 33550 33600 33650 33700 33750 33800 33850 33900 33950 34000 34050 34100 34150 34200 34250 34300 34350 34400 34450 34500 34550 34600 34650 34700 34750 34800 34850 34900 34950 35000 35050 35100 35150 35200 35250 35300 35350 35400 35450 35500 35550 35600 35650 35700 35750 35800 35850 35900 35950 36000 36050 36100 36150 36200 36250 36300 36350 36400 36450 36500 36550 36600 36650 36700 36750 36800 36850 36900 36950 37000 37050 37100 37150 37200 37250 37300 37350 37400 37450 37500 37550 37600 37650 37700 37750 37800 37850 37900 37950 38000 38050 38100 38150 38200 38250 38300 38350 38400 38450 38500 38550 38600 38650 38700 38750 38800 38850 38900 38950 39000 39050 39100 39150 39200 39250 39300 39350 39400 39450 39500 39550 39600 39650 39700 39750 39800 39850 39900 39950 40000 40050 40100 40150 40200 40250 40300 40350 40400 40450 40500 40550 40600 40650 40700 40750 40800 40850 40900 40950 41000 41050 41100 41150 41200 41250 41300 41350 41400 41450 41500 41550 41600 41650 41700 41750 41800 41850 41900 41950 42000 42050 42100 42150 42200 42250 42300 42350 42400 42450 42500 42550 42600 42650 42700 42750 42800 42850 42900 42950 43000 43050 43100 43150 43200 43250 43300 43350 43400 43450 43500 43550 43600 43650 43700 43750 43800 43850 43900 43950 44000 44050 44100 44150 44200 44250 44300 44350 44400 44450 44500 44550 44600 44650 44700 44750 44800 44850 44900 44950 45000 45050 45100 45150 45200 45250 45300 45350 45400 45450 45500 45550 45600 45650 45700 45750 45800 45850 45900 45950 46000 46050 46100 46150 46200 46250 46300 46350 46400 46450 46500 46550 46600 46650 46700 46750 46800 46850 46900 46950 47000 47050 47100 47150 47200 47250 47300 47350 47400 47450 47500 47550 47600 47650 47700 47750 47800 47850 47900 47950 48000 48050 48100 48150 48200 48250 48300 48350 48400 48450 48500 48550 48600 48650 48700 48750 48800 48850 48900 48950 49000 49050 49100 49150 49200 49250 49300 49350 49400 49450 49500 49550 49600 49650 49700 49750 49800 49850 49900 49950 50000 50050 50100 50150 50200 50250 50300 50350 50400 50450 50500 50550 50600 50650 50700 50750 50800 50850 50900 50950 51000 51050 51100 51150 51200 51250 51300 51350 51400 51450 51500 51550 51600 51650 51700 51750 51800 51850 51900 51950 52000 52050 52100 52150 52200 52250 52300 52350 52400 52450 52500 52550 52600 52650 52700 52750 52800 52850 52900 52950 53000 53050 53100 53150 53200 53250 53300 53350 53400 53450 53500 53550 53600 53650 53700 53750 53800 53850 53900 53950 54000 54050 54100 54150 54200 54250 54300 54350 54400 54450 54500 54550 54600 54650 54700 54750 54800 54850 54900 54950 55000 55050 55100 55150 55200 55250 55300 55350 55400 55450 55500 55550 55600 55650 55700 55750 55800 55850 55900 55950 56000 56050 56100 56150 56200 56250 56300 56350 56400 56450 56500 56550 56600 56650 56700 56750 56800 56850 56900 56950 57000 57050 57100 57150 57200 57250 57300 57350 57400 57450 57500 57550 57600 57650 57700 57750 57800 57850 57900 57950 58000 58050 58100 58150 58200 58250 58300 58350 58400 58450 58500 58550 58600 58650 58700 58750 58800 58850 58900 58950 59000 59050 59100 59150 59200 59250 59300 59350 59400 59450 59500 59550 59600 59650 59700 59750 59800 59850 59900 59950 60000 60050 60100 60150 60200 60250 60300 60350 60400 60450 60500 60550 60600 60650 60700 60750 60800 60850 60900 60950 61000 61050 61100 61150 61200 61250 61300 61350 61400 61450 61500 61550 61600 61650 61700 61750 61800 61850 61900 61950 62000 62050 62100 62150 62200 62250 62300 62350 62400 62450 62500 62550 62600 62650 62700 62750 62800 62850 62900 62950 63000 63050 63100 63150 63200 63250 63300 63350 63400 63450 63500 63550 63600 63650 63700 63750 63800 63850 63900 63950 64000 64050 64100 64150 64200 64250 64300 64350 64400 64450 64500 64550 64600 64650 64700 64750 64800 64850 64900 64950 65000 65050 65100 65150 65200 65250 65300 65350 65400 65450 65500 65550 65600 65650 65700 65750 65800 65850 65900 65950 66000 66050 66100 66150 66200 66250 66300 66350 66400 66450 66500 66550 66600 66650 66700 66750 66800 66850 66900 66950 67000 67050 67100 67150 67200 67250 67300 67350 67400 67450 67500 67550 67600 67650 67700 67750 67800 67850 67900 67950 68000 68050 68100 68150 68200 68250 68300 68350 68400 68450 68500 68550 68600 68650 68700 68750 68800 68850 68900 68950 69000 69050 69100 69150 69200 69250 69300 69350 69400 69450 69500 69550 69600 69650 69700 69750 69800 69850 69900 69950 70000 70050 70100 70150 70200 70250 70300 70350 70400 70450 70500 70550 70600 70650 70700 70750 70800 70850 70900 70950 71000 71050 71100 71150 71200 71250 71300 71350 71400 71450 71500 71550 71600 71650 71700 71750 71800 71850 71900 71950 72000 72050 72100 72150 72200 72250 72300 72350 72400 72450 72500 72550 72600 72650 72700 72750 72800 72850 72900 72950 73000 73050 73100 73150 73200 73250 73300 73350 73400 73450 73500 73550 73600 73650 73700 73750 73800 73850 73900 73950 74000 74050 74100 74150 74200 74250 74300 74350 74400 74450 74500 74550 74600 74650 74700 74750 74800 74850 74900 74950 75000 75050 75100 75150 75200 75250 75300 75350 75400 75450 75500 75550 75600 75650 75700 75750 75800 75850 75900 75950 76000 76050 76100 76150 76200 76250 76300 76350 76400 76450 76500 76550 76600 76650 76700 76750 76800 76850 76900 76950 77000 77050 77100 77150 77200 77250 77300 77350 77400 77450 77500 77550 77600 77650 77700 77750 77800 77850 77900 77950 78000 78050 78100 78150 78200 78250 78300 78350 78400 78450 78500 78550 78600 78650 78700 78750 78800 78850 78900 78950 79000 79050 79100 79150 79200 79250 79300 79350 79400 79450 79500 79550 79600 79650 79700 79750 79800 79850 79900 79950 80000 80050 80100 80150 80200 80250 80300 80350 80400 80450 80500 80550 80600 80650 80700 80750 80800 80850 80900 80950 81000 81050 81100 81150 81200 81250 81300 81350 81400 81450 81500 81550 81600 81650 81700 81750 81800 81850 81900 81950 82000 82050 82100 82150 82200 82250 82300 82350 82400 82450 82500 82550 82600 82650 82700 82750 82800 82850 82900 82950 83000 83050 83100 83150 83200 83250 83300 83350 83400 83450 83500 83550 83600 83650 83700 83750 83800 83850 83900 83950 84000 84050 84100 84150 84200 84250 84300 84350 84400 84450 84500 84550 84600 84650 84700 84750 84800 84850 84900 84950 85000 85050 85100 85150 85200 85250 85300 85350 85400 85450 85500 85550 85600 85650 85700 85750 85800 85850 85900 85950 86000 86050 86100 86150 86200 86250 86300 86350 86400 86450 86500 86550 86600 86650 86700 86750 86800 86850 86900 86950 87000 87050 87100 87150 87200 87250 87300

Appendix C - Proposed Drainage Layout

GENERAL NOTES

1. THIS DRAWING IS INDICATIVE ONLY AND SUBJECT TO CHANGE DURING DETAILED DESIGN AND APPROVALS FROM RELEVANT STATUTORY BODIES.
2. POSITION OF EXISTING SERVICES/STATUTORY UNDERTAKINGS AND AREAS NECESSARY TO OR CROSSING PROPOSED EXCAVATIONS ARE TO BE CONFIRMED PRIOR TO START ON SITE.
3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH AND CHECKED AGAINST ALL ENGINEERING DETAILS, SPECIFICATIONS, GEOTECHNICAL AND OTHER RELEVANT DOCUMENTATION PROVIDED.
4. THIS DRAWING IS SCHEMATIC FOR CLARITY ONLY, POSITIONS OF CULVERTS AND MANHOLES MAY VARY ON SITE DUE TO SITE CONDITIONS.
5. WHERE EXISTING OR PROPOSED TREES ARE ADJACENT TO ACCESS ROADS OR DRAINAGE, ROOT BARRIERS (TYPE TO BE APPROVED) ARE REQUIRED TO PREVENT STRUCTURAL DAMAGE.
6. ANY ANOMALY OR CONTRADICTIONS BETWEEN ANY OF THE ABOVE IS TO BE REPORTED IMMEDIATELY.
7. THE DESIGN IS TO COMPLY IN ALL ASPECTS WITH THE CURRENT BRITISH STANDARDS, BUILDING REGULATIONS AND BUILDING LEGISLATION ETC.
8. ALL PIPE SIZES, CHAMBER DIMENSIONS, SIZE & QUANTITY SUBJECT TO REVIEW AND DETAILED DESIGN. ALL ADOPTED PIPE WORK, ROUTING AND ANY EASEMENTS SUBJECT TO FULL DESIGN REVIEW AND APPROVAL BY THE RELEVANT BODIES.
9. DRAINAGE DESIGN SUBJECT TO DETAILED LEVELS AND EXTERNAL WORKS DESIGN.
10. SUBJECT TO DETAILED DESIGN AND APPROVAL.
11. THE CONTRACTOR IS TO CONSIDER METHODS OF DRAINAGE INSTALLATION THAT AVOIDS THE LOSS OF EXISTING TREES AND MITIGATES THE LOSS OF TREE ROOTS WHEREVER POSSIBLE. IF AN ALTERNATIVE/OPTIMISED ROUTE IS IDENTIFIED ON SITE, THIS SHOULD BE REPORTED BACK TO THE ENGINEER.

THIS DRAWING IS FOR PLANNING PURPOSES ONLY
AND NOT FOR CONSTRUCTION
SUBJECT TO RELEVANT APPROVALS

LEGEND

- SITE BOUNDARY
- PROPOSED SURFACE WATER DRAINAGE
- PROPOSED FOUL DRAINAGE
- RE → PROPOSED RODDING EYE
- ⊕ PROPOSED SURFACE WATER ORIFICE PLATE
- PROPOSED POROUS SURFACE (GRAVEL SURFACING)
- ▨ PROPOSED ATTENUATION TANK
- EXISTING DITCH
- OVERLAND FLOW ROUTE
- CONTRIBUTING AREA

A06	20.10.25	UPDATED IN ACCORDANCE WITH LATEST LAYOUT	DB
A05	22.08.25	UPDATED TO SUIT AMENDED SITE LAYOUT, OUTFALL ROUTE AND DITCH SURVEY UPDATE	DB
A04	01.07.25	UPDATED TO SUIT AMENDED SITE LAYOUT	CM
A03	02.05.25	UPDATED TO SUIT AMENDED SITE LAYOUT	CM
A02	24.04.25	UPDATED TO SUIT NEW SITE LAYOUT	CM
A01	09.04.25	FIRST ISSUE	CM

Rev

Date

Description

By

Client

MANORWOOD CONSTRUCTION LIMITED

Project
LAND WEST OF PARSONS FIELD
STABLES, PICKHURST LANE

PROPOSED DRAINAGE LAYOUT

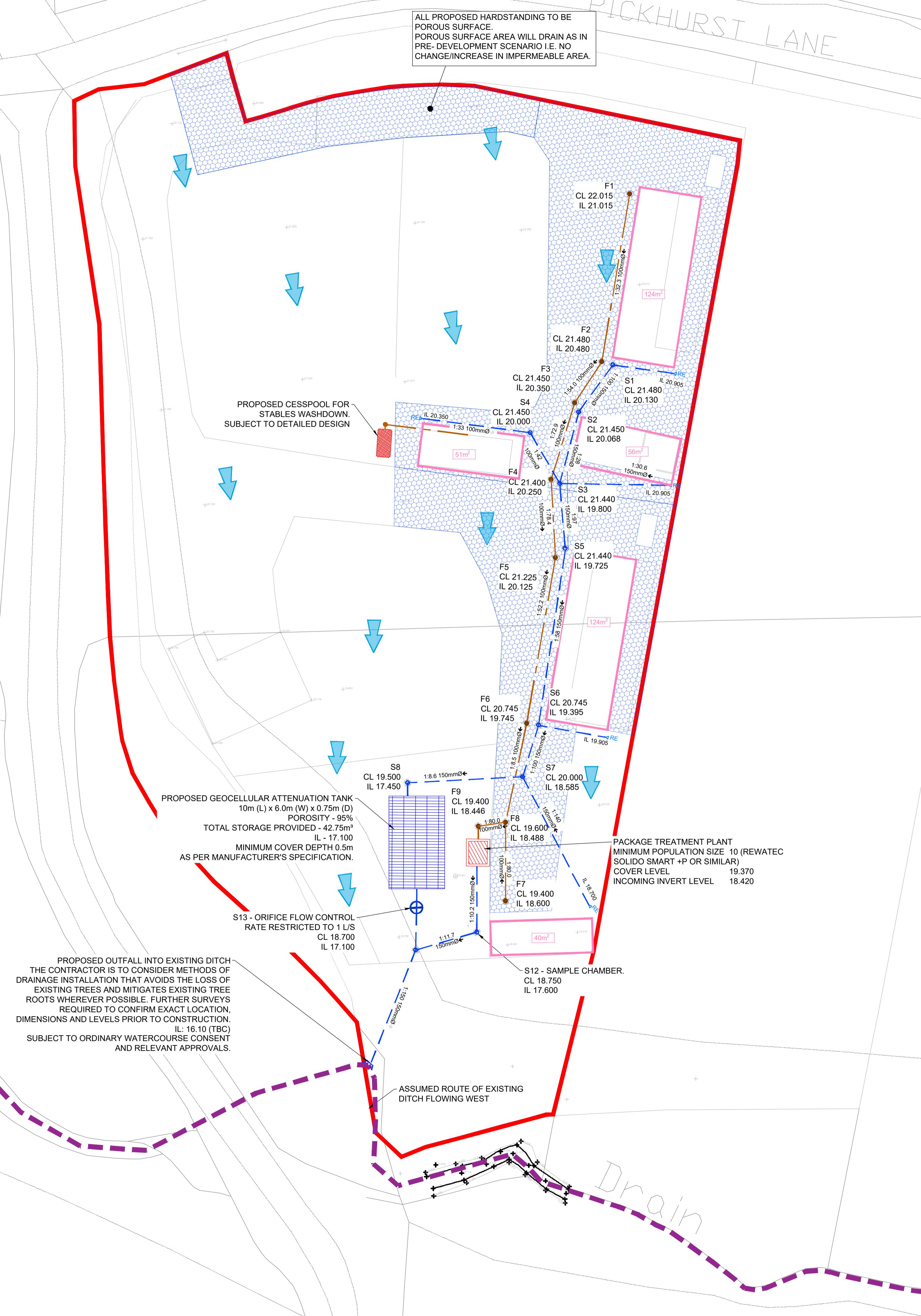
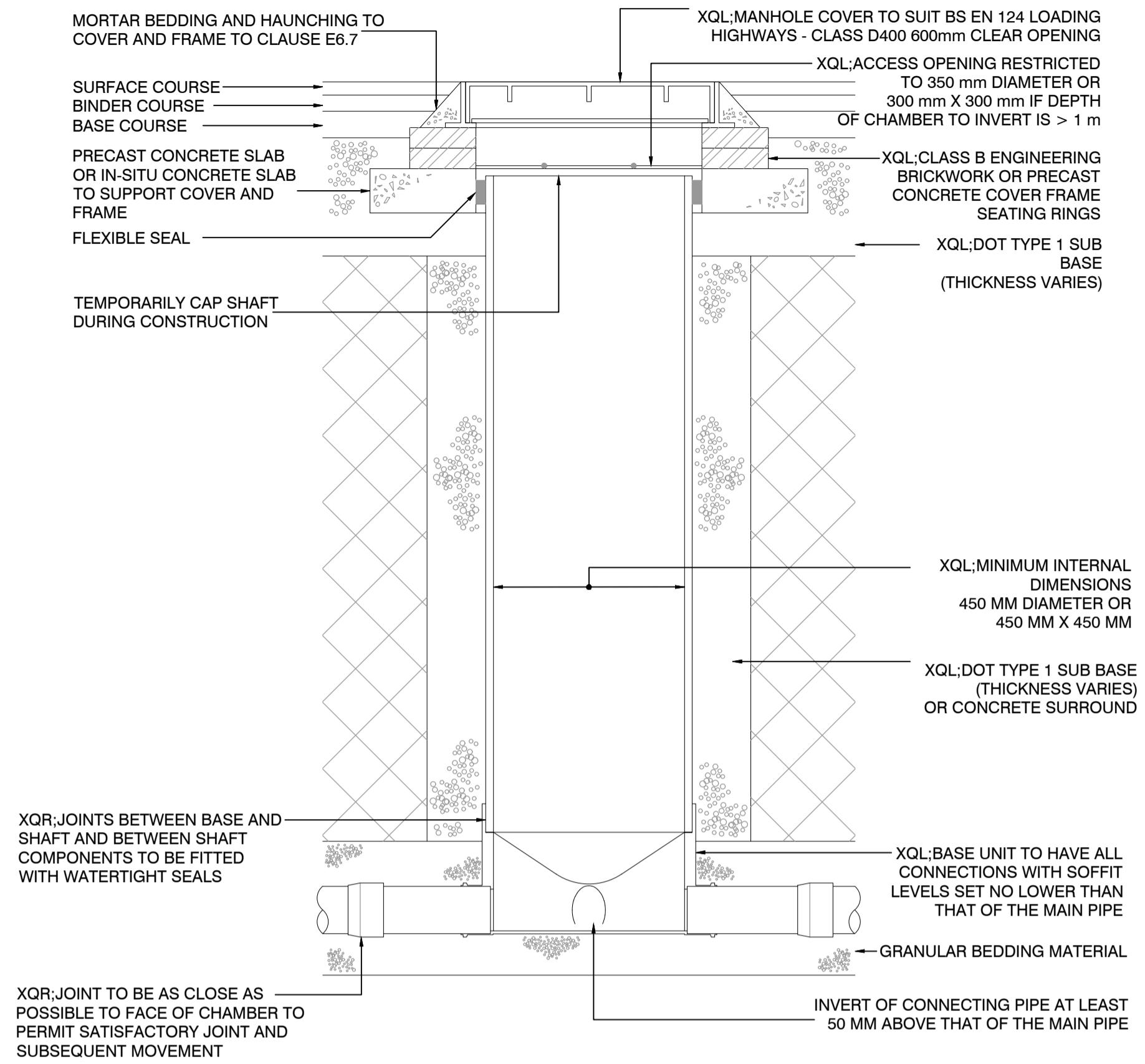
Project No. AEG7657 Drawing No. CIV-100 Revision A06

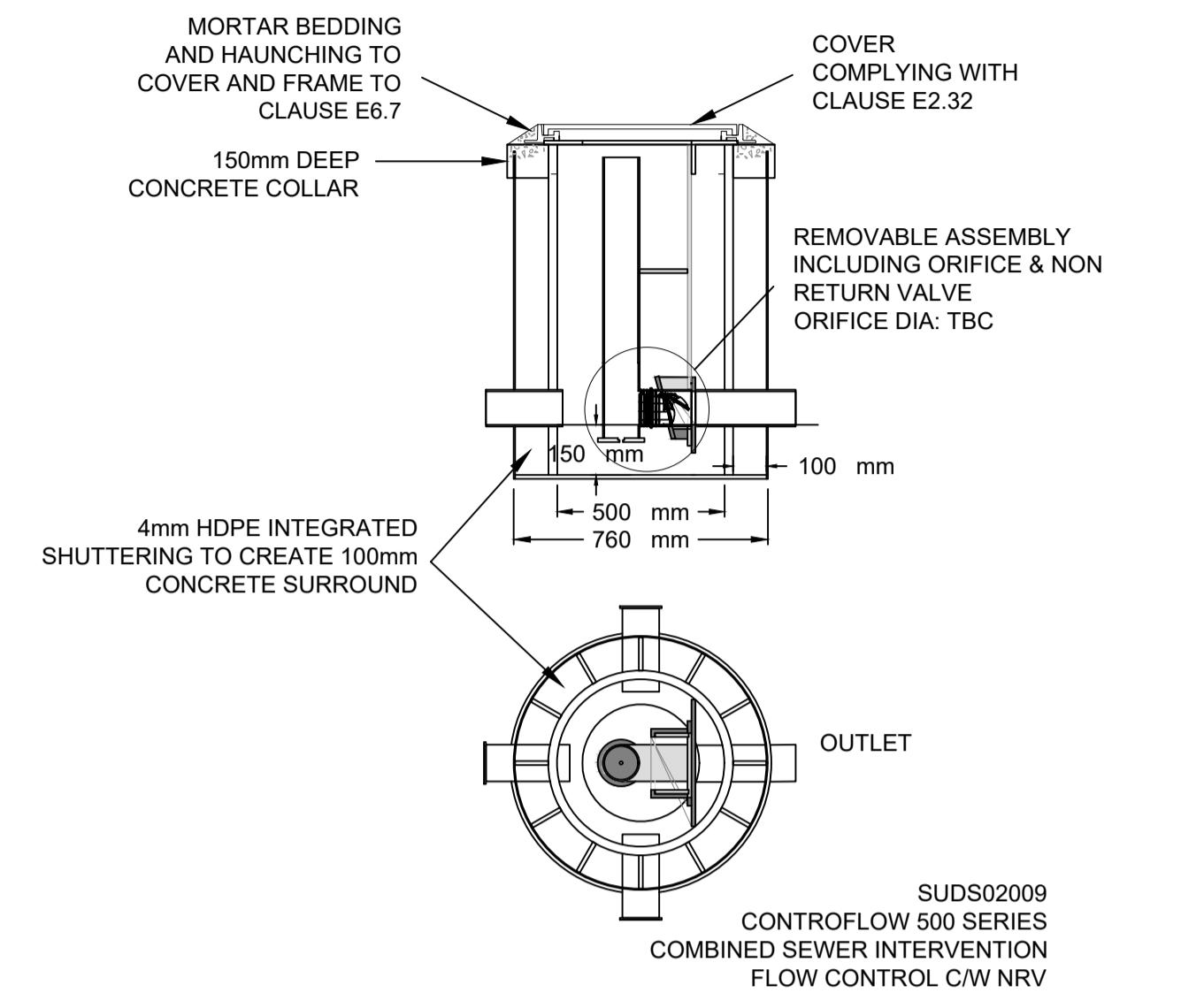
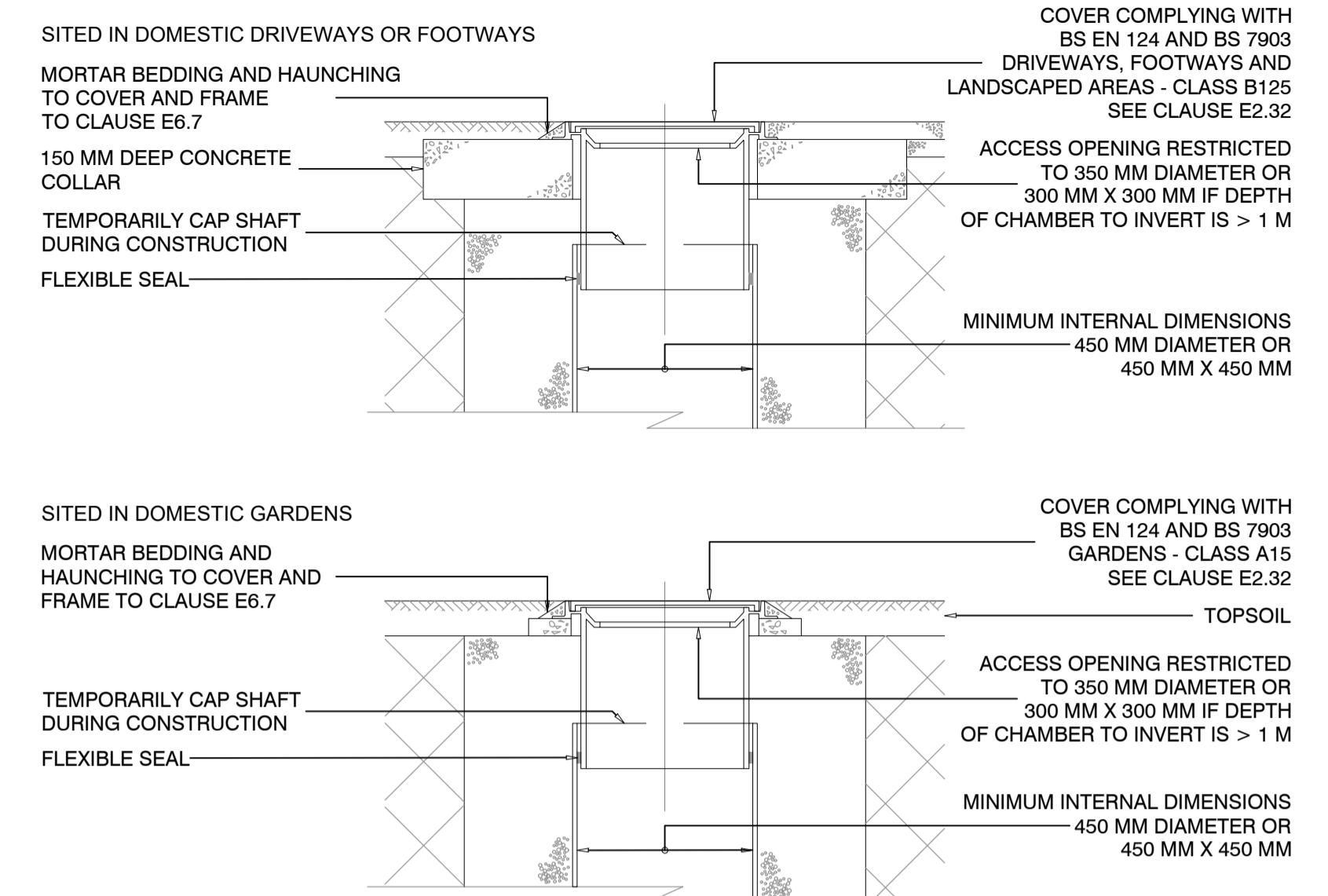
Drawn Checked Approved Date Scale @ A1
CM DB JM APR 2025 1:250

Drawing Status

PLANNING

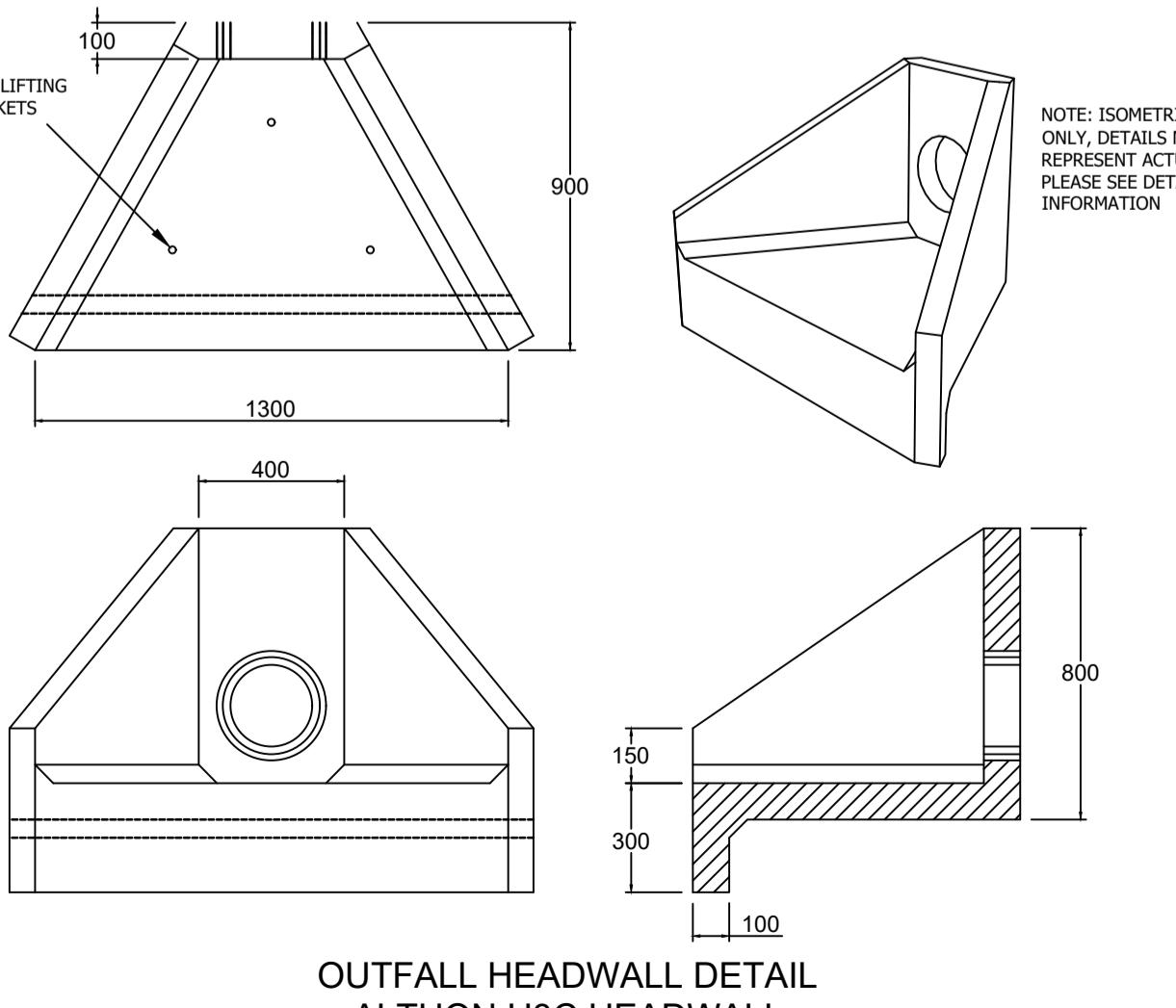
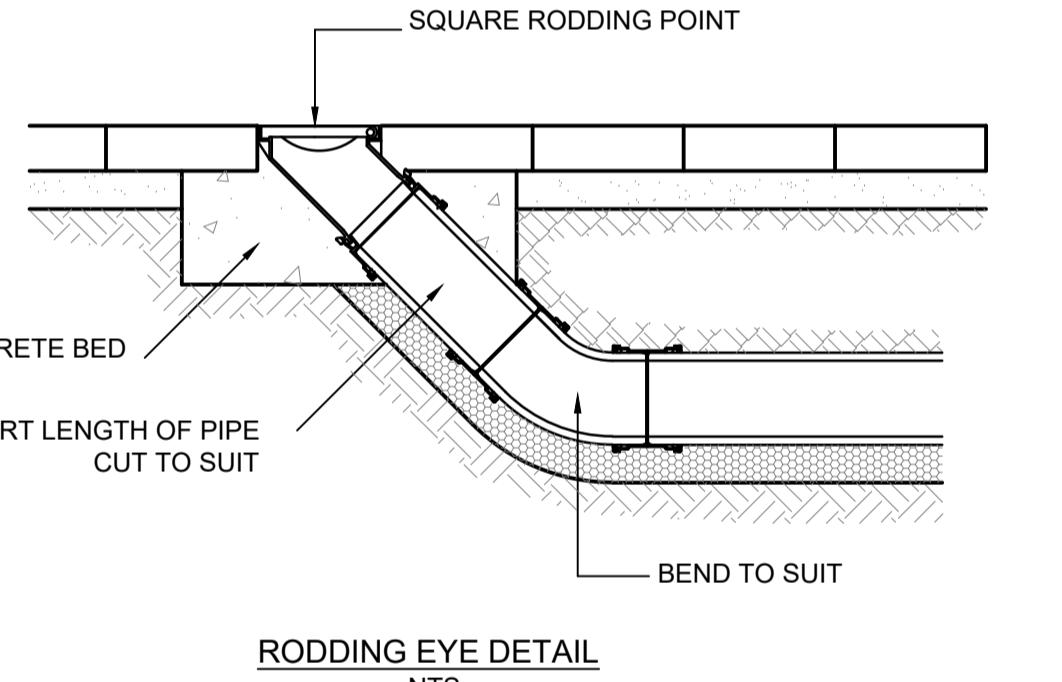
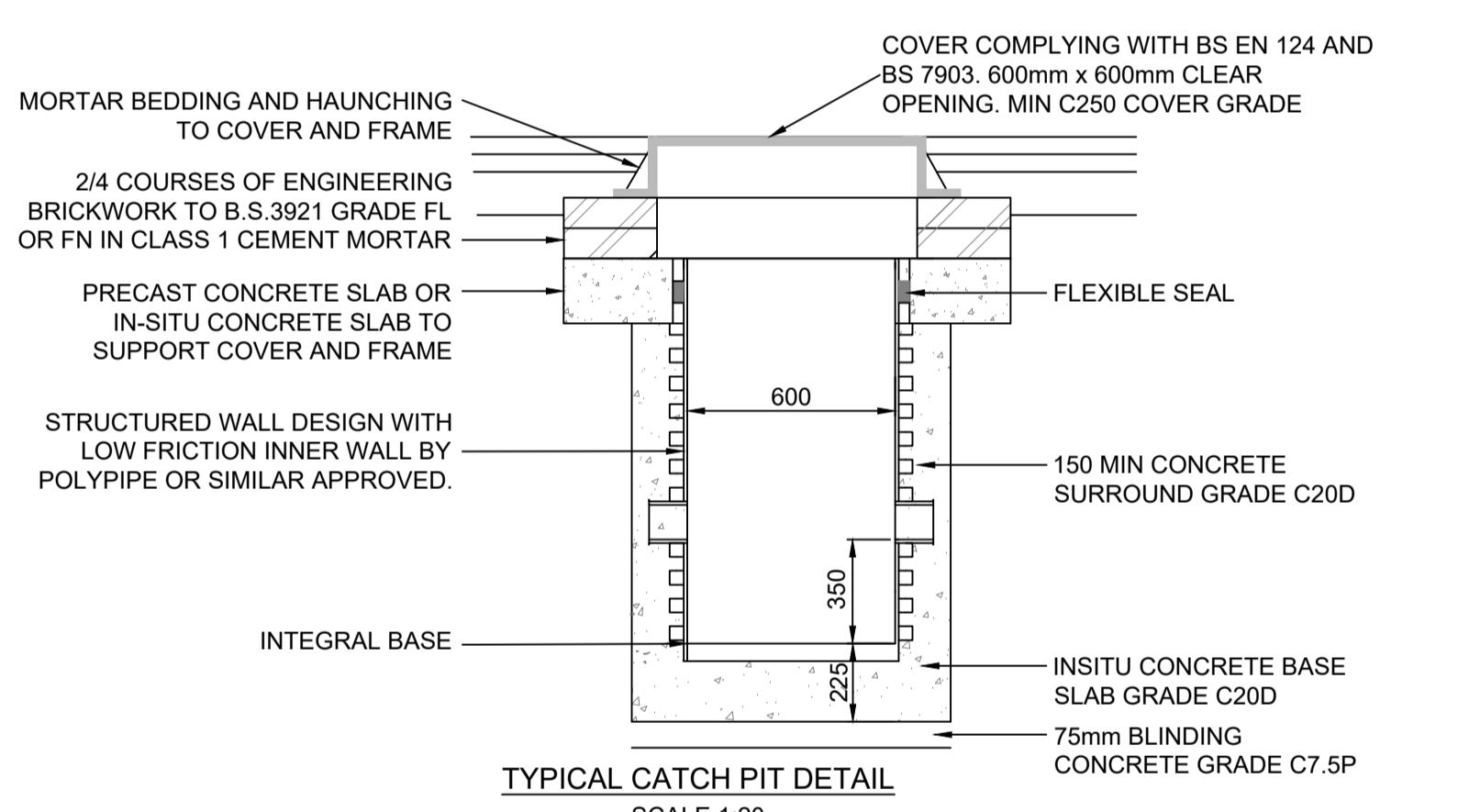
aegaea
water, civils and environment



FIGURE B18
TYPICAL INSPECTION CHAMBER DETAIL - TYPE D (FLEXIBLE MATERIAL DETAIL)
MAXIMUM DEPTH FROM COVER LEVEL TO SOFFIT OF PIPE
IN AREAS SUBJECT TO VEHICLE LOADING 2M NON-ENTRY

PLASTIC CHAMBERS AND RINGS SHALL COMPLY WITH BS EN 13598-1 AND
BS EN 13598-2 OR HAVE EQUIVALENT INDEPENDENT APPROVAL

FIGURE B19
ALTERNATIVE TOP DETAILS FOR LIGHT VEHICLE LOADING
AND LANDSCAPED AREAS - TYPE D




PLASTIC CHAMBERS AND RINGS SHALL COMPLY WITH BS EN 13598-1 AND
BS EN 13598-2 OR HAVE EQUIVALENT INDEPENDENT APPROVAL

ORIFICE FLOW CONTROL CHAMBER

DETAL TO BE CONFIRMED WITH MANUFACTURER FOR SITE SPECIFIC REQUIREMENTS

DETAL TO BE CONFIRMED WITH MANUFACTURER FOR SITE SPECIFIC REQUIREMENTS

FOR SURFACE FINISH TO DRAINAGE EXCAVATION REFER TO THE EXTERNAL FINISHES PLAN AND THEN RELEVANT HIGHWAY DETAILS. NOTE THAT REINSTATEMENT FOR WORKS IN EXISTING ADOPTED HIGHWAYS ARE TO BE AGREED BY THE CONTRACTOR WITH THE RELEVANT HIGHWAY AUTHORITY.

PROPOSED OR EXISTING GROUND LEVEL

DRAINAGE TRENCH

$x + 600\text{mm MAX}$

$x + 300\text{mm MIN}$

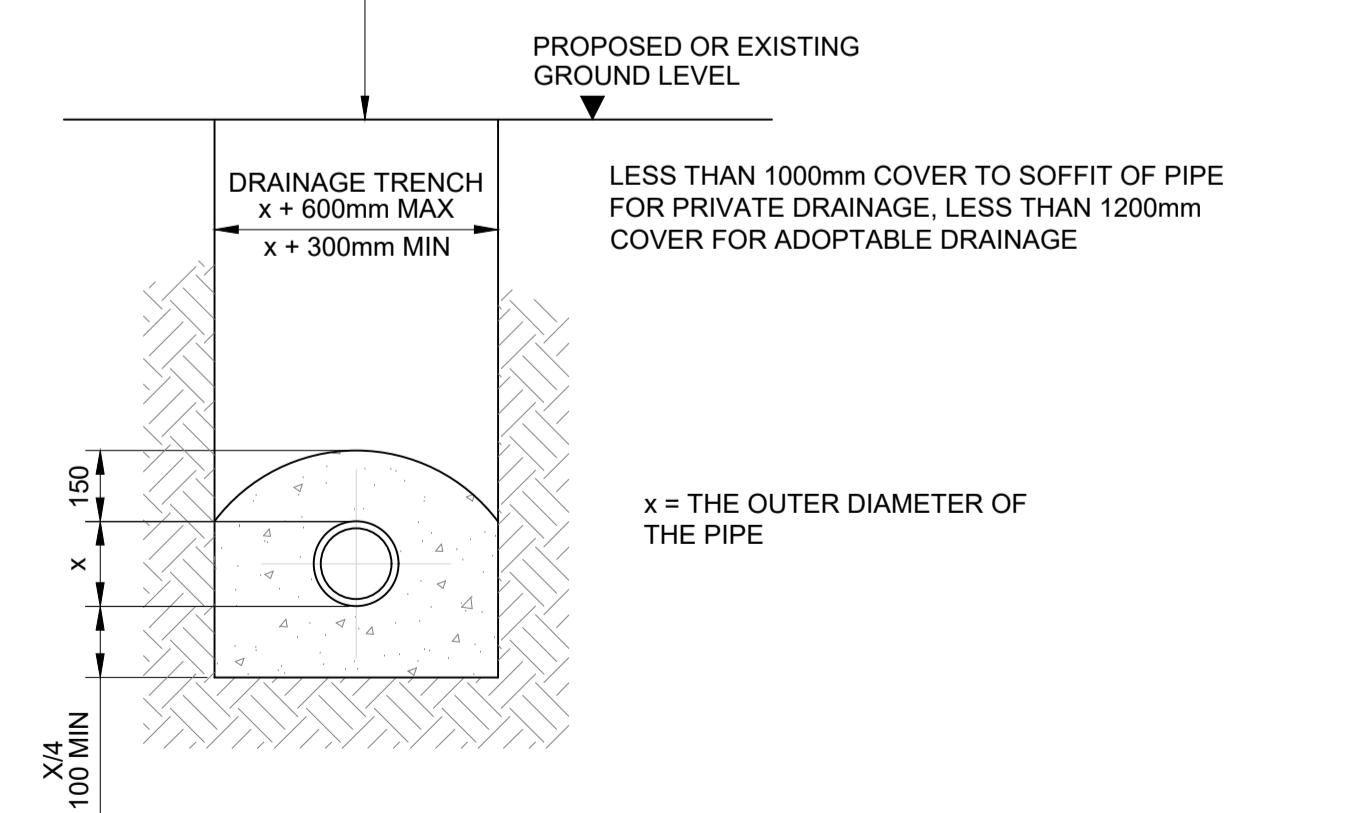
900mm MINIMUM COVER TO SOFFIT OF PIPE FOR PRIVATE DRAINAGE, 1200mm MINIMUM COVER FOR ADOPTABLE DRAINAGE

x

$x/6 \text{ MIN}$

50

300


x

100 MM

$x = \text{THE OUTER DIAMETER OF THE PIPE}$

CLASS 8 MATERIAL TO SHW CLAUSE 503.3(IV)

GRANULAR MATERIAL TO SHW CLAUSE 503.3(I)

NOTE: CLASS 'S' BEDDING FOR USE WITH ALL ADOPTABLE DRAINAGE WITH COVER TO SOFFIT OF PIPE GREATER THAN 1200MM. PRIVATE DRAINAGE WITHIN LANDSCAPED AND OTHER NON-TRAFFICKED AREAS WITH COVER GREATER THAN 1000MM TO THE PIPE SOFFIT MAY USE PIPE BEDDING CLASS 'T' REFER TO DRAWING F1 (SHW) HIGHWAY CONSTRUCTION DETAILS.

NOTE: CLASS 'Z' BEDDING FOR USE WITH ALL ADOPTABLE DRAINAGE WITH COVER TO SOFFIT OF PIPE LESS THAN 1200mm.

DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY.
THE CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.
ANY DISCREPANCIES MUST BE REPORTED IMMEDIATELY TO THE ENGINEER
OR CLARIFICATION BEFORE PROCEEDING.
THIS DRAWING IS COPYRIGHT AND OWNED BY AEGAEA.

SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION
REFER TO THE RELEVANT CONSTRUCTION (DESIGN AND MANAGEMENT) DOCUMENTATION WHERE APPROPRIATE.
IT IS ASSUMED THAT ALL WORKS ON THIS DRAWING WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WORKING WHERE APPROPRIATE TO AN APPROVED METHOD STATEMENT.

GENERAL NOTES

1. THE CONTRACTOR IS TO CHECK AND VERIFY ALL SITE DIMENSIONS AND LEVELS, INCLUDING EXISTING SEWER INVERT LEVELS AND UTILITIES, PRIOR TO START ON SITE.
2. POSITIONS OF EXISTING SERVICES ADJACENT TO OR CROSSING PROPOSED EXCAVATIONS ARE TO BE CONFIRMED PRIOR TO START ON SITE.
3. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH AND CHECKED AGAINST ALL, ENGINEERING DETAILS, SPECIFICATIONS, GEOTECHNICAL AND OTHER RELEVANT DOCUMENTATION PROVIDED.
4. POSITIONS OF PIPE RUNS AND MANHOLES MAY VARY ON SITE DUE TO ONGOING STATUTORY UNDERTAKER COMMENTS/SITE CONDITIONS.
5. ANY ANOMALY OR CONTRADICTIONS BETWEEN ANY OF THE ABOVE IS TO BE REPORTED IMMEDIATELY.
6. THE CONTRACTOR IS TO COMPLY IN ALL ASPECTS WITH THE CURRENT BRITISH STANDARDS, BUILDING REGULATIONS AND BUILDING LEGISLATION ETC.
7. WE RECOMMEND INFILTRATION TESTING IS UNDERTAKEN TO THE BASE OF THE INFILTRATION BASIN ONCE CONSTRUCTED TO CONFIRM THE RATE.

HIS DRAWING IS FOR PLANNING PURPOSES ONLY
AND NOT FOR CONSTRUCTION
SUBJECT TO RELEVANT APPROVALS

A01	09.04.25	FIRST ISSUE	CM
Rev	Date	Description	By
Client			

MANORWOOD CONSTRUCTION LIMITED

PROPOSED DRAINAGE DETAILS

Project No.	Drawing No.	Revision		
AEG7657	CIV-110	A01		
Drawn	Checked	Approved	Date	Scale @ A1
GM	DP	MM	MAR 2025	1/100

Drawing Status

PLANNING

Geogear

degaard water, civils and environment

Appendix D - Drainage Calculations

 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 1 Land west of Parsons Fields Pickhurst Lane
--	------------	--	---

Design Settings

Rainfall Methodology	FEH-22	Maximum Time of Concentration (mins)	30.00	Preferred Cover Depth (m)	1.200
Return Period (years)	5	Maximum Rainfall (mm/hr)	150.0	Include Intermediate Ground	✓
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00	Enforce best practice design rules	✓
CV	1.000	Connection Type	Level Soffits		
Time of Entry (mins)	5.00	Minimum Backdrop Height (m)	0.200		

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.013	5.00	21.480	Manhole	600	505385.169	120899.357	1.350
2			21.450	Manhole	600	505381.512	120894.324	1.382
4	0.006	5.00	21.440	Manhole	600	505380.061	120886.887	1.640
3	0.005	5.00	21.450	Manhole	600	505376.276	120892.059	1.450
5	0.000		21.225	Manhole	600	505380.033	120879.615	1.500
6	0.013	5.00	20.745	Manhole	600	505377.174	120860.566	1.350
7	0.004	5.00	20.000	Manhole	600	505375.460	120854.999	1.415
8			19.500	Manhole	600	505366.504	120851.028	2.050
9			18.700	Manhole	1200	505366.133	120836.411	1.600
9_OUT			18.000	Manhole	1200	505362.660	120814.755	1.350

 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 2 Land west of Parsons Fields Pickhurst Lane
--	------------	--	---

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	Link Type	T of C (mins)	Rain (mm/hr)
1.000	1	2	6.221	0.600	20.130	20.068	0.062	100.3	150	Circular	5.10	96.3
1.001	2	4	7.577	0.600	20.068	19.800	0.268	28.3	150	Circular	5.17	95.8
1.002	4	5	7.272	0.600	19.800	19.725	0.075	97.0	150	Circular	5.29	95.1
1.003	5	6	19.262	0.600	19.725	19.395	0.330	58.4	150	Circular	5.53	93.5
1.004	6	7	5.825	0.600	19.395	18.585	0.810	7.2	150	Circular	5.56	93.3
1.005	7	8	9.797	0.600	18.585	17.450	1.135	8.6	150	Circular	5.61	93.0
2.000	3	4	6.409	0.600	20.000	19.850	0.150	42.7	100	Circular	5.09	96.3
1.006	8	9	14.622	0.600	17.450	17.305	0.145	100.8	150	Circular	5.85	91.4
1.007	9	9_OUT	21.933	0.600	17.100	16.650	0.450	48.7	150	Circular	6.10	89.8

Name	US Node	DS Node	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1	2	1.003	17.7	4.5	1.200	1.232	0.013	0.0	52	0.842
1.001	2	4	1.900	33.6	4.5	1.232	1.490	0.013	0.0	37	1.332
1.002	4	5	1.020	18.0	8.2	1.490	1.350	0.024	0.0	71	0.998
1.003	5	6	1.319	23.3	8.1	1.350	1.200	0.024	0.0	61	1.204
1.004	6	7	3.781	66.8	12.5	1.200	1.265	0.037	0.0	44	2.901
1.005	7	8	3.450	61.0	13.8	1.265	1.900	0.041	0.0	48	2.796
2.000	3	4	1.183	9.3	1.7	1.350	1.490	0.005	0.0	29	0.905
1.006	8	9	1.000	17.7	13.5	1.900	1.245	0.041	0.0	99	1.101
1.007	9	9_OUT	1.444	25.5	13.3	1.450	1.200	0.041	0.0	77	1.460

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	6.221	100.3	150	Circular	21.480	20.130	1.200	21.450	20.068	1.232
1.001	7.577	28.3	150	Circular	21.450	20.068	1.232	21.440	19.800	1.490
1.002	7.272	97.0	150	Circular	21.440	19.800	1.490	21.225	19.725	1.350
1.003	19.262	58.4	150	Circular	21.225	19.725	1.350	20.745	19.395	1.200
1.004	5.825	7.2	150	Circular	20.745	19.395	1.200	20.000	18.585	1.265
1.005	9.797	8.6	150	Circular	20.000	18.585	1.265	19.500	17.450	1.900
2.000	6.409	42.7	100	Circular	21.450	20.000	1.350	21.440	19.850	1.490
1.006	14.622	100.8	150	Circular	19.500	17.450	1.900	18.700	17.305	1.245
1.007	21.933	48.7	150	Circular	18.700	17.100	1.450	18.000	16.650	1.200

Link	US Node	US Dia (mm)	Node Type	MH Type	DS Node	DS Dia (mm)	Node Type	MH Type
1.000	1	600	Manhole	Adoptable	2	600	Manhole	Adoptable
1.001	2	600	Manhole	Adoptable	4	600	Manhole	Adoptable
1.002	4	600	Manhole	Adoptable	5	600	Manhole	Adoptable
1.003	5	600	Manhole	Adoptable	6	600	Manhole	Adoptable
1.004	6	600	Manhole	Adoptable	7	600	Manhole	Adoptable
1.005	7	600	Manhole	Adoptable	8	600	Manhole	Adoptable
2.000	3	600	Manhole	Adoptable	4	600	Manhole	Adoptable
1.006	8	600	Manhole	Adoptable	9	1200	Manhole	Adoptable
1.007	9	1200	Manhole	Adoptable	9_OUT	1200	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
1	505385.169	120899.357	21.480	1.350	600		0	1.000	20.130	150
2	505381.512	120894.324	21.450	1.382	600		1	1.000	20.068	150
4	505380.061	120886.887	21.440	1.640	600		1	2.000	19.850	100
							2	1.001	19.800	150
3	505376.276	120892.059	21.450	1.450	600		0	1.002	19.800	150
5	505380.033	120879.615	21.225	1.500	600		1	1.002	19.725	150
6	505377.174	120860.566	20.745	1.350	600		1	1.003	19.395	150
7	505375.460	120854.999	20.000	1.415	600		1	1.004	18.585	150
8	505366.504	120851.028	19.500	2.050	600		1	1.005	17.450	150
							0	1.006	17.450	150

 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 5 Land west of Parsons Fields Pickhurst Lane
--	------------	--	---

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
9	505366.133	120836.411	18.700	1.600	1200	1	1.006	17.305	150
9_OUT	505362.660	120814.755	18.000	1.350	1200	0	1.007	17.100	150

Simulation Settings

Rainfall Methodology	FEH-22	Winter CV	1.000	Drain Down Time (mins)	240	Check Discharge Rate(s)	x
Rainfall Events	Singular	Analysis Speed	Detailed	Additional Storage (m³/ha)	0.0	Check Discharge Volume	x
Summer CV	1.000	Skip Steady State	x	Starting Level (m)			

Storm Durations

15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440 | 2160

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	10	0	100	0	10	0
30	0	10	0	100	45	10	0

Node 9 Online Orifice Control

Flap Valve	x	Invert Level (m)	17.100	Design Flow (l/s)	1.0	Discharge Coefficient	0.600
Replaces Downstream Link	x	Design Depth (m)	1.700	Diameter (m)	0.025		

Node 9 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	17.100
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.95	Time to half empty (mins)	

 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 6 Land west of Parsons Fields Pickhurst Lane
--	------------	--	---

Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)	Depth (m)	Area (m ²)	Inf Area (m ²)
0.000	60.0	60.0	0.750	60.0	80.6	0.751	0.0	80.6

Other (defaults)

Entry Loss (manhole) 0.250	Entry Loss (junction) 0.000	Apply Recommended Losses x
Exit Loss (manhole) 0.250	Exit Loss (junction) 0.000	Flood Risk (m) 0.300

Results for 1 year +10% A Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	20.164	0.034	1.8	0.0097	0.0000	OK
15 minute summer	2	10	20.091	0.023	1.8	0.0066	0.0000	OK
15 minute summer	4	11	19.846	0.046	3.3	0.0129	0.0000	OK
15 minute summer	3	11	20.019	0.019	0.7	0.0054	0.0000	OK
15 minute summer	5	11	19.766	0.041	3.3	0.0115	0.0000	OK
15 minute summer	6	11	19.424	0.029	5.0	0.0081	0.0000	OK
15 minute summer	7	11	18.615	0.030	5.5	0.0086	0.0000	OK
15 minute summer	8	11	17.509	0.059	5.5	0.0168	0.0000	OK
360 minute summer	9	240	17.208	0.108	1.8	6.2678	0.0000	OK
360 minute summer	9_OUT	248	16.663	0.013	0.4	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	1	1.000	2	1.8	0.752	0.100	0.0148	
15 minute summer	2	1.001	4	1.8	0.579	0.052	0.0236	
15 minute summer	4	1.002	5	3.3	0.784	0.181	0.0303	
15 minute summer	3	2.000	4	0.7	0.685	0.075	0.0065	
15 minute summer	5	1.003	6	3.3	1.068	0.140	0.0594	
15 minute summer	6	1.004	7	5.0	2.042	0.074	0.0142	
15 minute summer	7	1.005	8	5.5	1.259	0.090	0.0443	
15 minute summer	8	1.006	9	5.5	0.864	0.309	0.0923	
360 minute summer	9	1.007	9_OUT	0.4	0.533	0.016	0.0165	8.5

Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.82%

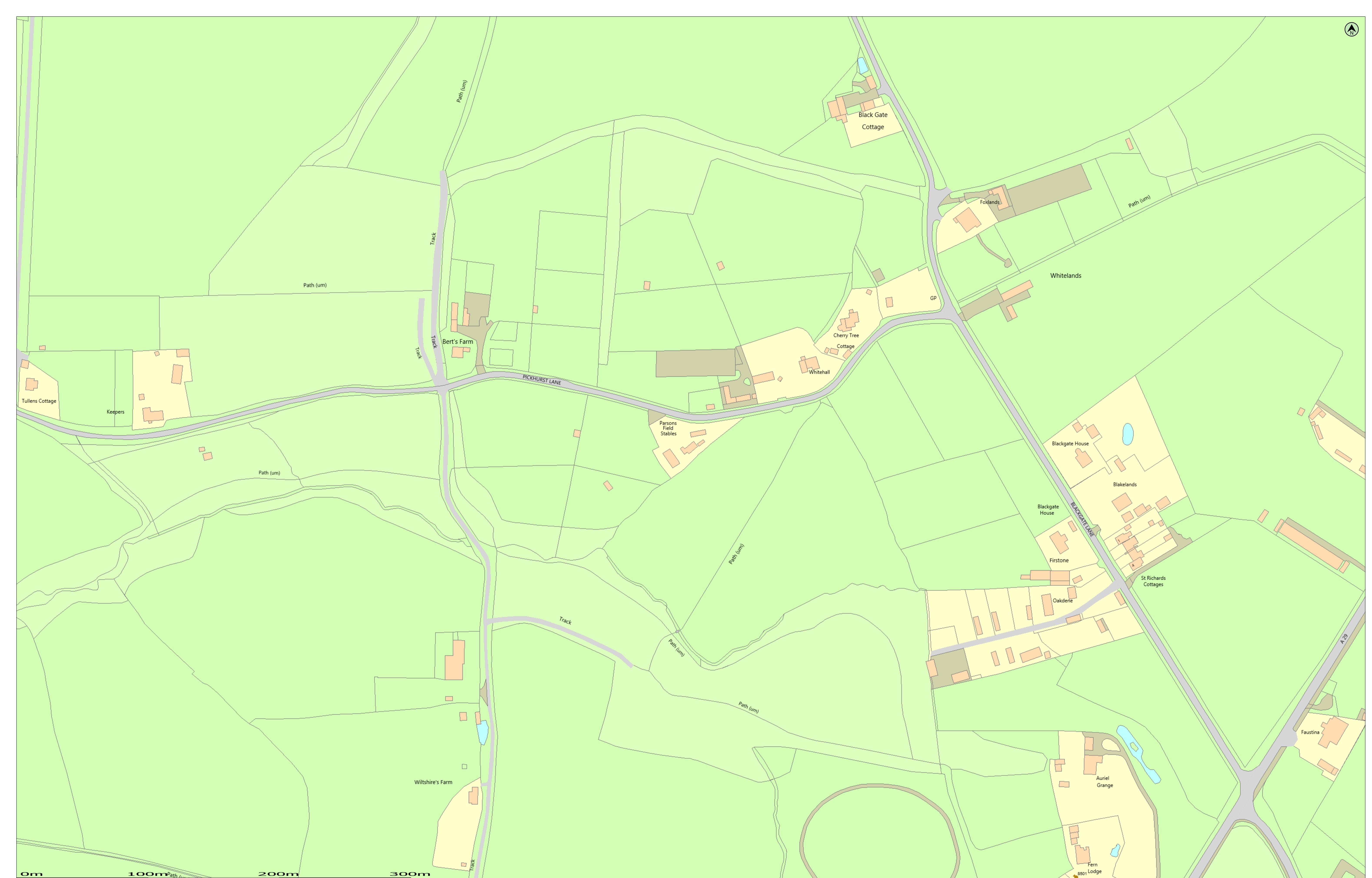
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	20.204	0.074	7.7	0.0211	0.0000	OK
15 minute summer	2	10	20.117	0.049	7.6	0.0137	0.0000	OK
15 minute summer	4	10	19.909	0.109	14.1	0.0308	0.0000	OK
15 minute summer	3	10	20.039	0.039	3.0	0.0111	0.0000	OK
15 minute summer	5	11	19.816	0.091	13.9	0.0257	0.0000	OK
15 minute summer	6	10	19.459	0.064	21.4	0.0180	0.0000	OK
15 minute summer	7	10	18.650	0.065	23.7	0.0184	0.0000	OK
15 minute summer	8	11	17.741	0.291	23.7	0.0825	0.0000	SURCHARGED
360 minute summer	9	272	17.444	0.344	5.2	20.0163	0.0000	SURCHARGED
360 minute summer	9_OUT	272	16.668	0.018	0.7	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link Node	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	1	1.000	2	7.6	1.126	0.431	0.0424	
15 minute summer	2	1.001	4	7.6	0.813	0.226	0.0705	
15 minute summer	4	1.002	5	13.9	1.120	0.771	0.0901	
15 minute summer	3	2.000	4	3.0	0.893	0.320	0.0245	
15 minute summer	5	1.003	6	13.9	1.524	0.597	0.1758	
15 minute summer	6	1.004	7	21.3	2.960	0.319	0.0420	
15 minute summer	7	1.005	8	23.7	1.655	0.388	0.1220	
15 minute summer	8	1.006	9	23.4	1.329	1.323	0.2516	
360 minute summer	9	1.007	9_OUT	0.7	0.640	0.029	0.0256	19.2

 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 9 Land west of Parsons Fields Pickhurst Lane
--	------------	--	---

Results for 100 year +10% A Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	20.215	0.085	9.6	0.0240	0.0000	OK
15 minute summer	2	10	20.123	0.055	9.5	0.0155	0.0000	OK
15 minute summer	4	10	19.931	0.131	17.6	0.0372	0.0000	OK
15 minute summer	3	10	20.044	0.044	3.7	0.0126	0.0000	OK
15 minute summer	5	11	19.831	0.106	17.4	0.0300	0.0000	OK
15 minute summer	6	10	19.468	0.073	26.7	0.0206	0.0000	OK
15 minute summer	7	11	18.664	0.079	29.7	0.0223	0.0000	OK
15 minute summer	8	11	17.921	0.471	29.5	0.1334	0.0000	SURCHARGED
240 minute winter	9	232	17.527	0.427	5.7	24.8308	0.0000	SURCHARGED
240 minute winter	9_OUT	232	16.669	0.019	0.8	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link Node	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	1	1.000	2	9.5	1.193	0.539	0.0499	
15 minute summer	2	1.001	4	9.5	0.839	0.283	0.0839	
15 minute summer	4	1.002	5	17.4	1.165	0.962	0.1074	
15 minute summer	3	2.000	4	3.7	0.860	0.398	0.0326	
15 minute summer	5	1.003	6	17.4	1.594	0.745	0.2089	
15 minute summer	6	1.004	7	26.7	3.051	0.399	0.0517	
15 minute summer	7	1.005	8	29.5	1.935	0.484	0.1323	
15 minute summer	8	1.006	9	29.1	1.655	1.648	0.2548	
240 minute winter	9	1.007	9_OUT	0.8	0.662	0.033	0.0276	17.9


 water, civils and environment	Aegaea Ltd	File: SW Model - FEH V3.0.pfd Network: Storm Network Daniel Buciak 20/10/2025	Page 10 Land west of Parsons Fields Pickhurst Lane
--	------------	--	--

Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	1	10	20.238	0.108	14.0	0.0305	0.0000	OK
15 minute summer	2	11	20.150	0.082	13.9	0.0232	0.0000	OK
15 minute summer	4	11	20.095	0.295	24.3	0.0833	0.0000	SURCHARGED
15 minute summer	3	11	20.143	0.143	5.4	0.0404	0.0000	SURCHARGED
15 minute summer	5	12	19.924	0.199	23.7	0.0562	0.0000	SURCHARGED
15 minute summer	6	11	19.482	0.087	36.5	0.0245	0.0000	OK
15 minute summer	7	12	18.874	0.289	41.3	0.0819	0.0000	SURCHARGED
15 minute summer	8	12	18.266	0.816	38.5	0.2310	0.0000	SURCHARGED
240 minute winter	9	236	17.744	0.644	8.2	37.4536	0.0000	SURCHARGED
240 minute winter	9_OUT	236	16.671	0.021	1.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link Node	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	1	1.000	2	13.9	1.286	0.784	0.0719	
15 minute summer	2	1.001	4	13.5	0.903	0.403	0.1041	
15 minute summer	4	1.002	5	23.7	1.345	1.313	0.1280	
15 minute summer	3	2.000	4	5.1	0.868	0.553	0.0501	
15 minute summer	5	1.003	6	22.9	1.592	0.981	0.2711	
15 minute summer	6	1.004	7	37.0	3.066	0.554	0.0820	
15 minute summer	7	1.005	8	38.5	2.208	0.631	0.1725	
15 minute summer	8	1.006	9	38.3	2.178	2.168	0.2548	
240 minute winter	9	1.007	9_OUT	1.0	0.705	0.040	0.0320	22.5

Appendix E - Southern Water Asset Mapping

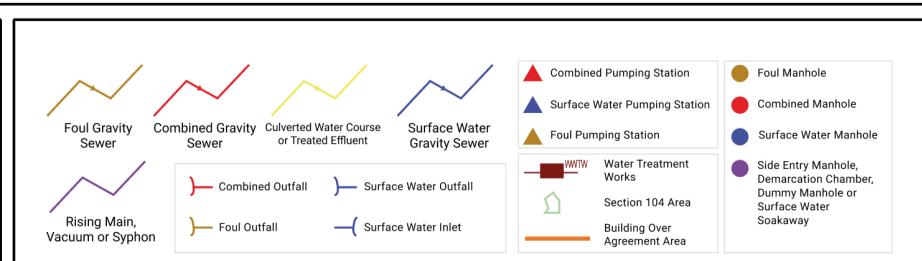
(c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122

Date: 10/04/25

Scale: 1:1250

Map Centre: 505511, 120885

Data updated: 20/03/25


Our Ref: 1740796 - 1

Wastewater Plan A1
Powered by digital

The positions of pipes shown on this plan are believed to be correct, but Southern Water Services Ltd accept no responsibility in the event of inaccuracy. The actual positions should be determined on site. This plan is produced by Southern Water Services Ltd (c) Crown copyright and database rights 2025 Ordnance Survey AC0000808122. This map is to be used for the purposes of viewing the location of Southern Water plant only. Any other uses of the map data or further copies is not permitted.

WARNING: BAC pipes are constructed of Bonded Asbestos Cement.

WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.

cer@aegea.com
Pickhurst Lane

