

APPENDIX DOCUMENT

Rev2 – 10.09.2025

Groundwater Investigation Report

Site: Land at Shoreham Road, Small Dole

Contents

Appendix A – Boundary map and site plan

Appendix B – Water features map

Appendix C – SPZ radius map

Appendix D.1 – Pre-construction borehole schematic BH1

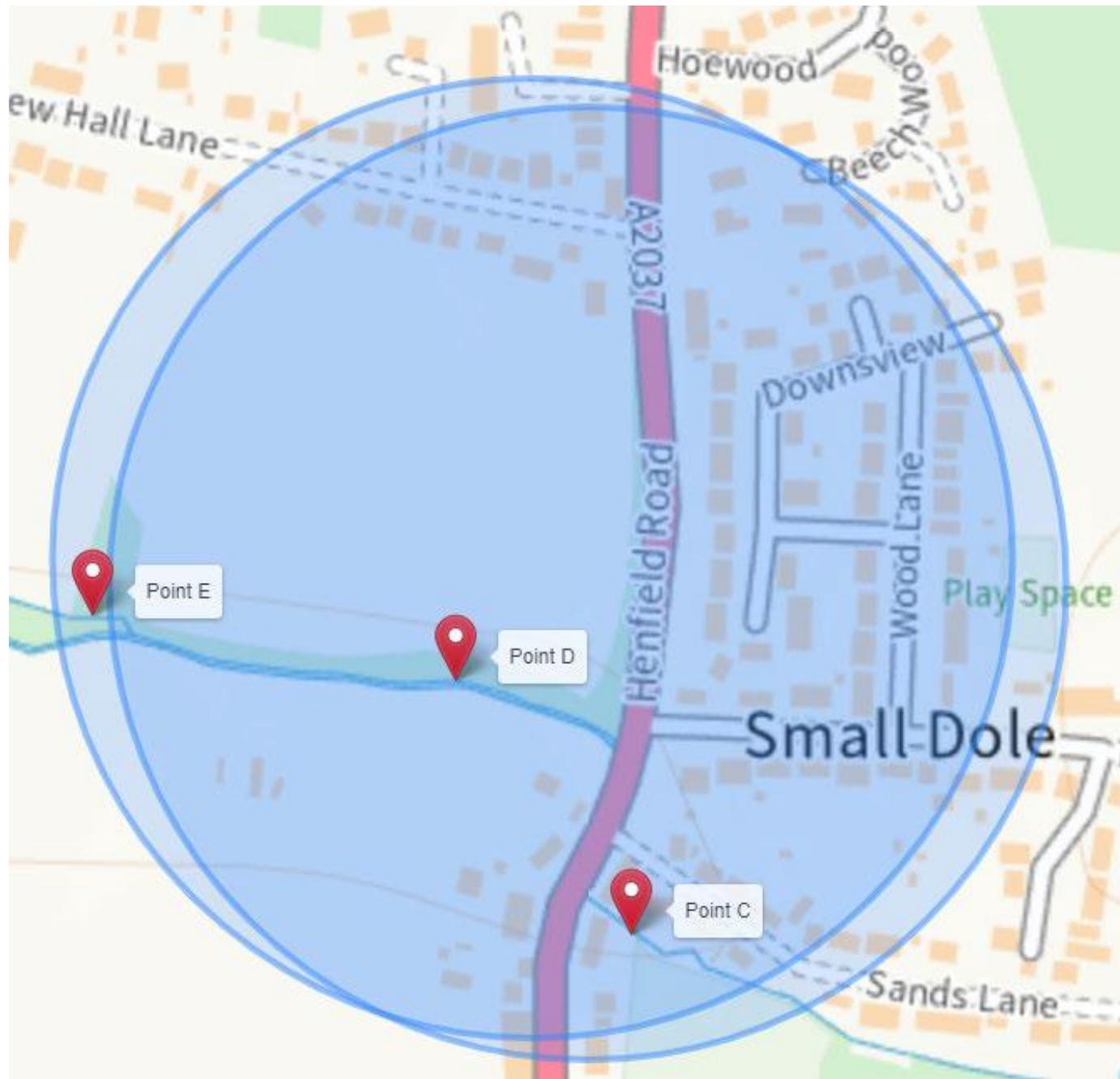
Appendix E.1 – As built borehole schematic

Appendix F.1 – BGS borehole 1

Appendix F.2 – BGS borehole 2

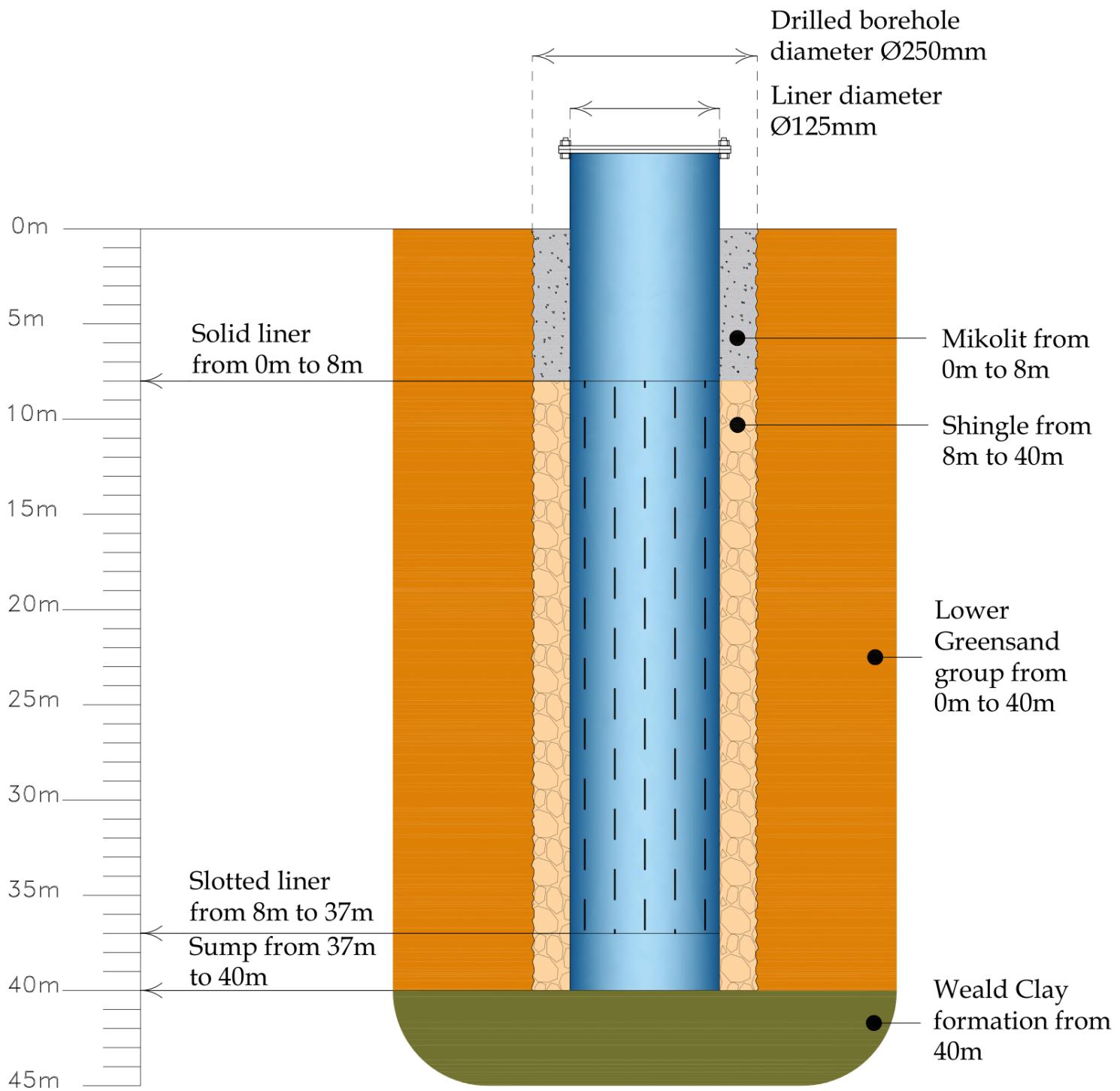
Appendix G.1 – BH 1 water quality results

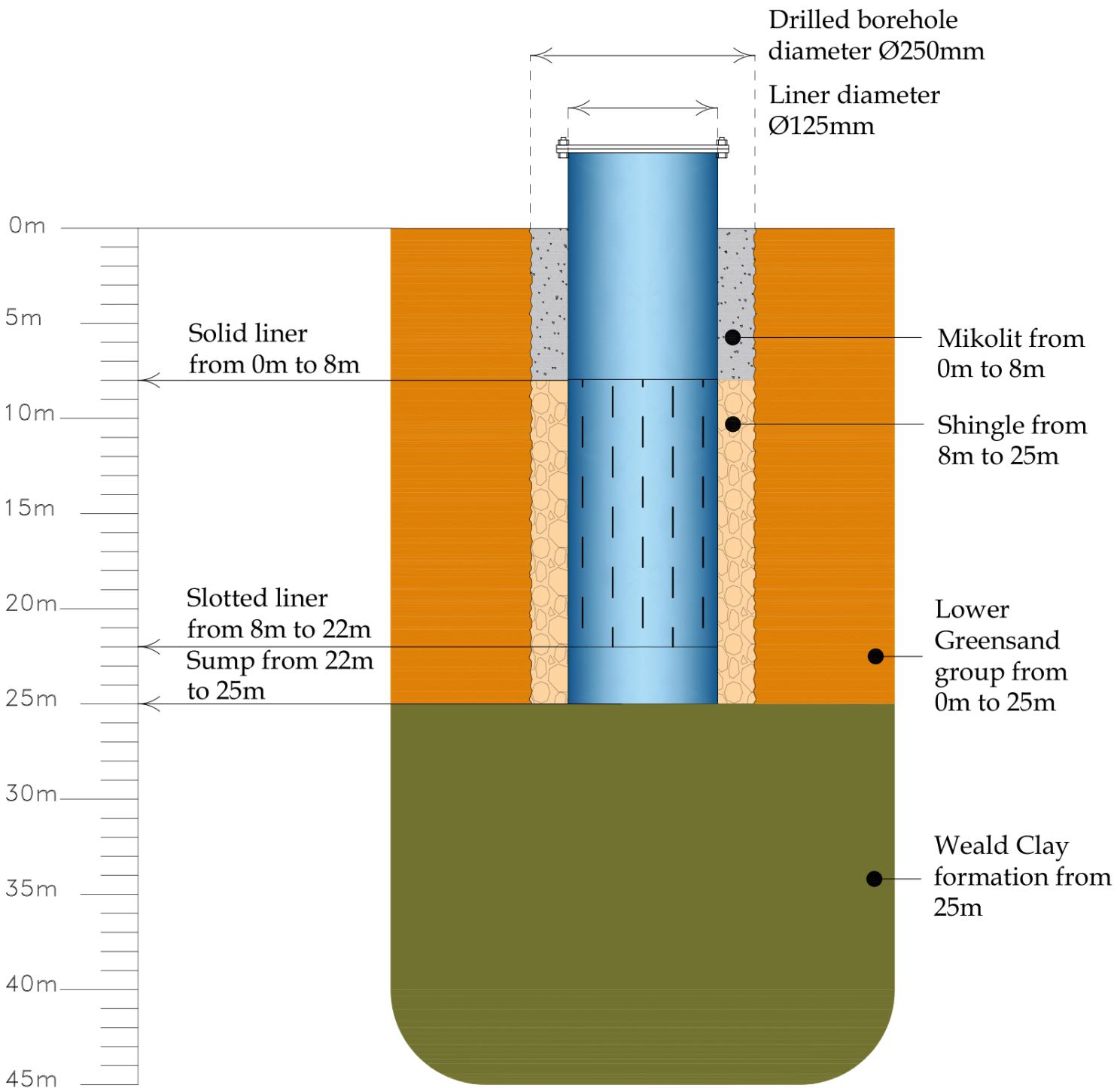
Appendix G.2 – BH 2 water quality results


Appendix H – Concept design

APPENDIX A – Boundary map and site plan

APPENDIX B – Water Features Map


Feature	Location (NGR)
Point C – Ditch/Stream	TQ 21455 12871
Point D – Ditch/Stream	TQ 21363 13004
Point E – Ditch/Stream	TQ 21173 13038
Feature	Notes
Point D – Ditch/Stream	Connects to River Adur



E	F	G	H	I	J	K	L
			Title: BH1491 - SPZ map Client: Wates Developments Date: 23/12/2024 Revision: Rev000		Drawn: Mr Adam Hardiman 		Indicative layout for design purposes only. Final position to be confirmed on site. Drawing is not to be scaled.

Indicative layout for design purposes only. Final position to be confirmed on site. Drawing is not to be scaled.

APPENDIX D.1 – Pre-construction
 Schematic

APPENDIX E.1 – As built borehole schematic

APPENDIX F.1 – BGS Borehole 1

WR38: Borehole record form

Borehole record form

Water Resources Act 1991 (as amended by the Water Act 2003)

A Site details

 Borehole drilled for WATES

 Location NEW HALL LANE, SMALL DOLE, BN5 9YH

 NGR (ten digits) TQ 21433 13055 Please attach site plan

Ground level (if known) _____ metres Above Ordnance Datum

 Drilling company NICHOLLS BOREHOLES

 Date drilling commenced 09/01/2024 (DD/MM/YYYY) Completed 09/01/2024 (DD/MM/YYYY)

B Construction details

 Borehole datum (if not ground level) _____ metres (m). Please tick if this is above or below ground level.
 (point from which all measurements of depth are taken, for example, flange, edge of chamber)

 Borehole drilled diameter 250 mm from 0 to 26 m/depth

_____ mm from _____ to _____ m/depth

_____ mm from _____ to _____ m/depth

_____ mm from _____ to _____ m/depth

 Casing material Solid uPVC diameter 125 mm from 0 to 7.9 m/depth
 and type (for example, if plain steel, plastic slotted). Please record permanent casing details, not temporary casing.

 Casing material Slotted uPVC diameter 125 mm from 7.9 to 22 m/depth

 Casing material Solid uPVC diameter 125 mm from 22 to 25 m/depth

Casing material _____ diameter _____ mm from _____ to _____ m/depth

 Grouting details 45 bags of shingle, 14 bags of mikolit. Drilled with mud

 Water struck at 1. N/A m (depth below datum – mbd) 2. _____ m (mbd)
 3. _____ m (mbd) 4. _____ m (mbd)

C Test pumping summary (Please supply full details on form WR39)

 Test pumping datum _____ m. Please tick if this is above or below ground level.
 (if different from borehole datum)

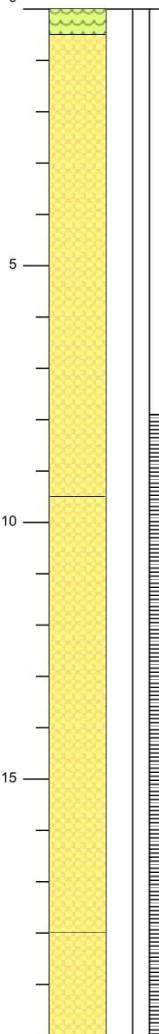
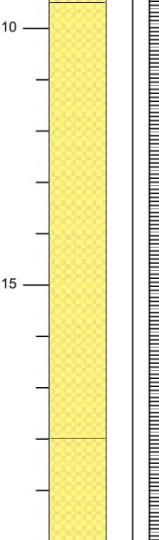
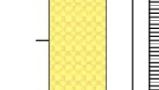
Pump suction depth _____ mbd

Water level (start of test) _____ mbd

Water level (end of test) _____ mbd

Type of test (for example, bailer, step, constant rate)

 Pumping rate _____ m³/hour or litres/second . Please tick as appropriate.
 for _____ days, _____ hours, _____ mins




 Recovery to _____ mbd in _____ days, _____ hours, _____ mins
 (from end of pumping)

Date(s) of measurements Pump started _____ (DD/MM/YYYY)

Pump stopped _____ (DD/MM/YYYY)

 Please supply chemical analysis if available. If you have included this please tick this box

APPENDIX F.1 cont'd – BGS Borehole 1

NICHOLLS LICENSING & CONSULTING		Client: wates Project: New Hall Lane Address: New Hall Lane, Small Dole, West Sussex, United Kingdom	WELL LOG Well No. BH 1491, BH-1 Page: 1 of 2		
Drilling Start Date: 09/01/2024 Drilling End Date: 09/01/2024 Drilling Company: Drilling Method: Mud Rotary Drilling Equipment: Driller: Logged By: aparna sinha		Boring Depth (m): 26 Boring Diameter (mm): 250.0 Sampling Method(s): N/A DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): N/A Location (Lat, Long): 50.90665, -0.27825	Well Depth (m): 26 Well Diameter (mm): 125 Screen Slot (mm): 0.300 Riser Material: Other Screen Material: PVC Prepack Seal Material(s): N/A Filter Pack:		
SOIL/ROCK VISUAL DESCRIPTION					
DEPTH (m)	LITHOLOGY	WATER LEVEL	WELL COMPLETION	COLLECT	MEASURE
				Sample Type Time Blow Counts Recovery (m)	PID (ppm) Lab Sample DEPTH (m)
0					
5					
10					
15					
20					
(0.00m) Topsoil (0.50m) Poorly graded SAND with silt (SP-SM); fine grained, little silt, few clay, medium dense, brown (10YR 5/3)					
(9.50m) Poorly graded SAND with silt (SP-SM); fine grained, little silt, few clay, dense, brown (7.5YR 4/2)					
(18.00m) Poorly graded SAND with silt (SP-SM); fine grained, little silt, few clay, medium dense, pale brown (10YR 6/3)					
NOTES:					

APPENDIX F.1 cont'd – BGS Borehole 1

NICHOLLS LICENSING & CONSULTING				Client: wates Project: New Hall Lane Address: New Hall Lane, Small Dole, West Sussex, United Kingdom	WELL LOG Well No. BH 1491, BH-1 Page: 2 of 2
Drilling Start Date: 09/01/2024 Drilling End Date: 09/01/2024 Drilling Company: Drilling Method: Mud Rotary Drilling Equipment: Driller: Logged By: aparna sinha		Boring Depth (m): 26 Boring Diameter (mm): 250.0 Sampling Method(s): N/A DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): N/A Location (Lat, Long): 50.90665, -0.27825	Well Depth (m): 26 Well Diameter (mm): 125 Screen Slot (mm): 0.300 Riser Material: Other Screen Material: PVC Prepack Seal Material(s): N/A Filter Pack:	SOIL/ROCK VISUAL DESCRIPTION	
SOIL/ROCK VISUAL DESCRIPTION					
DEPTH (m)	LITHOLOGY	WATER LEVEL	WELL COMPLETION	COLLECT	MEASURE
				Sample Type Time Blow Counts Recovery (m)	PID (ppm) Lab Sample DEPTH (m)
20					
22					
24					
25					
26					
28					
30					
32					
34					
36					
38					
40					
NOTES:					

APPENDIX F.2– BGS Borehole 2

WR38: Borehole record form

Environment Agency

Water Resources Act 1991 (as amended by the Water Act 2003)

A Site details

Borehole drilled for WATES DEVELOPMENTS

Location NEW HALL LANE, SMALL DOLE, BN5 9YH

NGR (ten digits) TQ 21404 13068 Please attach site plan

Ground level (if known) metres Above Ordnance Datum

Drilling company NICHOLLS BOREHOLES

Date drilling commenced 10/01/2024 (DD/MM/YYYY) Completed 10/01/2024 (DD/MM/YYYY)

B Construction details

Borehole datum (if not ground level) metres (m). Please tick if this is above or below ground level. (point from which all measurements of depth are taken, for example, flange, edge of chamber)

Borehole drilled diameter 250 mm from 0 to 26 m/depth
 mm from to m/depth
 mm from to m/depth
 mm from to m/depth

Casing material Solid uPVC diameter 125 mm from 0 to 7.9 m/depth
 and type (for example, if plain steel, plastic slotted). Please record permanent casing details, not temporary casing.

Casing material Slotted uPVC diameter 125 mm from 7.9 to 22 m/depth

Casing material Solid uPVC diameter 125 mm from 22 to 25 m/depth

Casing material diameter mm from to m/depth

Grouting details 43 bags of shingle, 12 bags of mikolit. Drilled with mud

Water struck at 1. N/A m (depth below datum – mbd) 2. m (mbd)
 3. m (mbd) 4. m (mbd)

C Test pumping summary (Please supply full details on form WR39)

Test pumping datum m. Please tick if this is above or below ground level.
 (if different from borehole datum)

Pump suction depth mbd

Water level (start of test) mbd

Water level (end of test) mbd

Type of test (for example, bailer, step, constant rate)

Pumping rate m³/hour or litres/second Please tick as appropriate.

for days, hours, mins

Recovery to mbd in days, hours, mins
 (from end of pumping)

Date(s) of measurements Pump started (DD/MM/YYYY)

Pump stopped (DD/MM/YYYY)

Please supply chemical analysis if available. If you have included this please tick this box

APPENDIX F.2 Cont'd— BGS Borehole 2

APPENDIX F.2 Cont'd– BGS Borehole 2

NICHOLLS LICENSING & CONSULTING				Client: wates Project: New Hall Lane BH2 Address: New Hall Lane, Small Dole, West Sussex, United Kingdom	WELL LOG Well No. BH 1491, BH-2 Page: 2 of 2																																																										
Drilling Start Date: 10/01/2024 Drilling End Date: 10/01/2024 Drilling Company: Drilling Method: Mud Rotary Drilling Equipment: Driller: Logged By: aparna sinha		Boring Depth (m): 26 Boring Diameter (mm): 250.0 Sampling Method(s): N/A DTW During Drilling (m): N/A DTW After Drilling (m): N/A Ground Surface Elev. (m): N/A Location (Lat, Long): 50.90667, -0.27824	Well Depth (m): 26 Well Diameter (mm): 125 Screen Slot (mm): 0.300 Riser Material: Other Screen Material: PVC Prepack Seal Material(s): N/A Filter Pack:	SOIL/ROCK VISUAL DESCRIPTION																																																											
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th rowspan="2">DEPTH (m)</th> <th rowspan="2">LITHOLOGY</th> <th rowspan="2">WATER LEVEL</th> <th rowspan="2">WELL COMPLETION</th> <th colspan="3">COLLECT</th> <th rowspan="2">MEASURE</th> <th rowspan="2">DEPTH (m)</th> </tr> <tr> <th>Sample Type</th> <th>Time</th> <th>Blow Counts</th> <th>Recovery (m)</th> </tr> </thead> <tbody> <tr> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> </tr> <tr> <td>25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>25</td> </tr> <tr> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30</td> </tr> <tr> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35</td> </tr> <tr> <td>40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40</td> </tr> </tbody> </table>						DEPTH (m)	LITHOLOGY	WATER LEVEL	WELL COMPLETION	COLLECT			MEASURE	DEPTH (m)	Sample Type	Time	Blow Counts	Recovery (m)	20								20	25								25	30								30	35								35	40								40
DEPTH (m)	LITHOLOGY	WATER LEVEL	WELL COMPLETION	COLLECT						MEASURE	DEPTH (m)																																																				
				Sample Type	Time	Blow Counts	Recovery (m)																																																								
20								20																																																							
25								25																																																							
30								30																																																							
35								35																																																							
40								40																																																							
20								20																																																							
25								25																																																							
30								30																																																							
35								35																																																							
40								40																																																							
(17.50m) Poorly graded SAND with silt (SP-SM); fine grained, little silt, dense, light brown (24.00m) Lean CLAY (CL); dark gray (26.00m) Boring terminated																																																															
NOTES:																																																															

APPENDIX G.1– BH1 water quality results

South East Water Scientific Services
3 Columbus Drive, Farnborough
Hampshire, GU14 0NZ
E-Mail: sales@southeastwater.co.uk
Website: www.sewscientificservices.co.uk

south east water
scientific services

ANALYTICAL REPORT

Page 1 of 3

NICHOLLS BOREHOLES
Brownings Barn
Glasshouse Lane
Kirdford
West Sussex
RH14 0LW
Collected From: NEW HALL LANE, SMALL DOLE
Date Received: 30/08/2024

Certificate Number: 1300384-1 Final

Order Number: BH 1491 BH1

Date Reported: 20/09/2024

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4844586	Desc: RAW BOREHOLE BH1 Collect From: NEW HALL LANE, SMALL DOLE Order No: BH 1491 BH1 Received Date: 30/08/2024 Tested Date: 30/08/2024 Sampling Date: 30/08/2024 11:00 Sample Type: GW : Ground Water Product: SS-DWREGS	255 245 225 calc 230 230 430 400 400 660 660 660 660 660 ext ext ext 3401 390 5413 765 745 745 745 740 740 740 740 3371 3545 3545 3545	Ammonium (Ammonia and Ammonium Ions) Nitrate Nitrite Nitrite/Nitrate Odour - Qualitative Odour - Quantitative Colony Count 3 Days at 22°C E coli Total Coliforms Colour Conductivity Hydrogen Ion (pH) Turbidity Acrylamide Epichlorohydrin Vinyl Chloride Bromate Enterococci Total Cyanide Mercury Antimony Arsenic Selenium Boron Calcium Magnesium Sodium Fluoride 2,4,5-T 2,4-D Bentazone	<0.020 19.6 <0.004 0.392 None 0 >300 0 2 mpn/100ml <2 679 7.1 0.140 <0.006 <0.1 <0.113 <0.8 3 cfu/100ml <4.1 <0.04 <0.2 <1.0 0.9 0.071 138.3 5.6 14.6 0.067 <0.007 <0.007 <0.007	mg/l mg/l mg/l mg/l None 0 cfu/ml mpn/100ml 2 mpn/100ml mg/l Pt/Co uS/cm pH_Unit NTU µg / l µg / l mg/l mg/l mg/l mg/l mg/l µg / l µg / l µg / l	<0.500 <50.0 <0.500 <1.000 * * 0 6.5 to 9.5 <4.000 <0.100 <0.10 * <10.0 0 <50.0 <1.00 <5.0 <10.0 <10.0 <1.000 <200.0 <1.500 <0.100 <0.100 <0.100	

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.
Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non LIKAS accredited test

A result of 0 cfu denotes none found in volume analysed

E - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018

F - Result Exceeds The Maximum Pcv As Defined In The Text - Analysis subcontracted to an external laboratory

APPENDIX G.1 cont'd– BH1 water quality
 results

Page 2 of 3

Certificate Number: 1300384-1 Final

Order Number: BH 1491 BH1

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4844586	Continued from Page 1	3545	Bromoxynil	<0.007	µg / l	<0.100	
		3545	Dicamba	<0.020	µg / l	<0.100	
		3545	Dichlorprop	<0.003	µg / l	<0.100	
		3545	Fluoxypyrr	<0.008	µg / l	<0.100	
		3545	MCPA	<0.008	µg / l	<0.100	
		3545	MCPB	<0.008	µg / l	<0.100	
		3545	Mecoprop (MCPP)	<0.005	µg / l	<0.100	
		3545	Triclopyr	<0.015	µg / l	<0.100	
		2587	Atrazine	<0.002	µg / l	<0.100	
		2587	Carbendazim	<0.001	µg / l	<0.100	
		2587	Carbetamide	<0.002	µg / l	<0.100	
		2587	Chlortoluron	<0.003	µg / l	<0.100	
		2587	Diuron	<0.004	µg / l	<0.100	
		2587	Epoxiconazole	<0.003	µg / l	<0.100	
		2587	Flutriafol	<0.003	µg / l	<0.100	
		2587	Isoproturon	<0.003	µg / l	<0.100	
		2587	Linuron	<0.003	µg / l	<0.100	
		2587	Oxadixyl	<0.003	µg / l	<0.100	
		2587	Pendimethalin	<0.007	µg / l	<0.100	
		2587	Prometryn	<0.002	µg / l	<0.100	
		2587	Propazine	<0.002	µg / l	<0.100	
		2587	Simazine	<0.003	µg / l	<0.100	
		2587	Terbutryn	<0.002	µg / l	<0.100	
		2587	Trietazine	<0.004	µg / l	<0.100	
		480	Benzo (a) pyrene	<0.003	µg / l	<0.010	
		480	Benzo(1,12)perylene	<0.003	µg / l		
		480	Benzo(11,12)fluoranthene	<0.003	µg / l		
		480	Benzo(3,4)fluoranthene	<0.003	µg / l		
		480	Indeno(1,2,3-cd)pyrene	<0.003	µg / l		
		calc	PAH Total	0.000	ug/l	<0.100	*
		775	1,1,1 Trichloroethane	<0.60	µg / l		
		775	1,2-Dichloroethane	<0.12	µg / l	<3.00	
		775	Benzene	<0.02	µg / l	<1.00	
		775	Dibromochloromethane	<0.50	µg / l		
		775	Dichlorobromomethane	<0.43	µg / l		
		775	Tetrachloroethene	<0.15	µg / l	<10.00	
		calc	Tetrachloroethene/Trichloroethene- Sum	0.00	µg / l		*
		775	Tetrachloromethane	<0.11	µg / l	<3.00	
		calc	Total Trihalomethanes	0.00	µg / l	<100.00	*
		775	Tribromomethane	<0.60	µg / l		
		775	Trichloroethene	<0.10	µg / l	<10.00	
		775	Trichloromethane	<0.50	µg / l		
		730	Aluminium	<6.1	µg / l	<200.0	
		730	Iron	<7.3	µg / l	<200.0	
		730	Manganese	2.3	µg / l	<50.0	

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non UKAS accredited test

A result of 0 cfu denotes none found in volume analysed

F - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018

ext - Analysis subcontracted to an external laboratory

1579

APPENDIX G.1 cont'd– BH1 water quality
 results

Page 3 of 3

Certificate Number: 1300384-1 Final

Order Number: BH 1491 BH1

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4844586	Continued from Page 2	735	Cadmium	<0.12	µg / l	<5.00	
		735	Chromium	<0.5	µg / l	<50.0	
		730	First Draw Copper	0.011	mg/l	<2.000	
		730	First Draw Lead	<0.9	µg / l	<10.0	
		730	First Draw Nickel	1.0	µg / l	<20.0	
		360	Clostridium perfringens (including spore calc)	0	cfu/100ml	0	
			Pesticides - Total Substances	0.000	ug/l		*
		5823	Aldrin	<0.007	µg / l	<0.030	
		5823	Dichlobenil	<0.004	µg / l	<0.100	
		5823	Dieldrin	<0.006	µg / l	<0.030	
		5823	Gamma-HCH (Lindane)	<0.010	µg / l	<0.100	
		5823	Heptachlor	<0.009	µg / l	<0.030	
		5823	Heptachlor Epoxide	<0.005	µg / l	<0.030	
		5823	Propyzamide	<0.005	µg / l	<0.100	
		5823	Tri-allate	<0.005	µg / l	<0.100	
		730	Iron (Free)	<7.3	µg / l		
		295	Gross Alpha	0.02	Bq/l	<0.10	
		295	Gross Beta	<0.28	Bq/l	<1.00	
		calc	Hardness (CaCO ₃)	371.4	mg CaCO ₃ /l		*

 Richard Brown
 Laboratory Manager

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non UKAS accredited test

A result of 0 cfu denotes none found in volume analysed

F - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018

ext - Analysis subcontracted to an external laboratory

1579

APPENDIX G.1 cont'd– BH1 water quality

results

B. A. Hydro Solutions Ltd.

3 & 4 The Sidings

Shepreth

Herts

SG8 6PZ

Telephone: +44 1763 26 27 26

Email: info@bahs ltd.com

Web: www.bahs ltd.com

LABORATORY REPORT - Page 1 of 2

Client:	Nicholls Boreholes Brownings Barn Glass House Lane Kirdford RH14 0LW	Certificate No:	23240908-1
		Order No:	BH1491 BH1
		Date Reported:	23/01/2024
		Site Name:	BH1491
		Sample Desc:	BH1491

Test	Results	Limit	Units	Comment	Sample Details
Alkalinity	332	-	mg/l		
Aluminium	<20.00	200	µg/l		
Ammonium	<0.020	0.5	mg/l		
Boron	72	1000	µg/l		
Calcium	152.4	-	mg/l		
Chloride	29.2	250	mg/l		
Copper	<100.00	2000	µg/l		
Fluoride	<100.00	1500	ug/l		
Dissolved Iron (Fe II)	<10.00	-	µg/l		
Total Iron (FeII+FeIII)	51	200	µg/l		
Lead	<2.00	10	µg/l		
Magnesium	0.24	-	mg/l		
Manganese	6	50	µg/l		
Nitrate	<22.00	50	mg/l		
Nitrite	105	500	µg/l		
Nitrite/Nitrate	0.4	≤1	-		
Phosphate	<0.15	-	mg/l		
Potassium	6.79	-	mg/l		
Sodium	43	200	mg/l		
Sulphate	58.8	250	mg/l		
Electrical Conductivity	754	2500	µS/cm		
Calcium Hardness	381	-	mg/l		
Total Hardness as CaCO ₃	382	-	mg/l	V Hard	
Magnesium Hardness	1	-	mg/l		
pH	6.91	6.5-9.5	pH units		
Total Dissolved Solids	369	-	mg/l		
Turbidity	0.54	4	NTU		

Disclaimers:

The results provided are not UKAS accredited and can only be used for non-regulatory purposes

* Denotes concentrations above UK drinking water standards

Denotes results which must be treated with caution due to sampling, transit or storage issues prior to delivery to laboratory

</> Denotes concentration found within sample below/above the equipment's detection level

≈ Indicates test has been repeated due to uncertainty or testing issues

\$ Indicates sample was tested outside of the stability period, validity of results may be affected

All analytical quality control associated with these results was satisfactory, details are available on request

B. A. Hydro Solutions Limited - 3 & 4 The Sidings - Station Road - Shepreth - Herts - SG8 6PZ - Tel: +44 1763 26 27 26 - Web: bahs ltd.com

APPENDIX G.1 cont'd– BH1 water quality

B. A. Hydro Solutions Ltd.

3 & 4 The Sidings

Shepreth

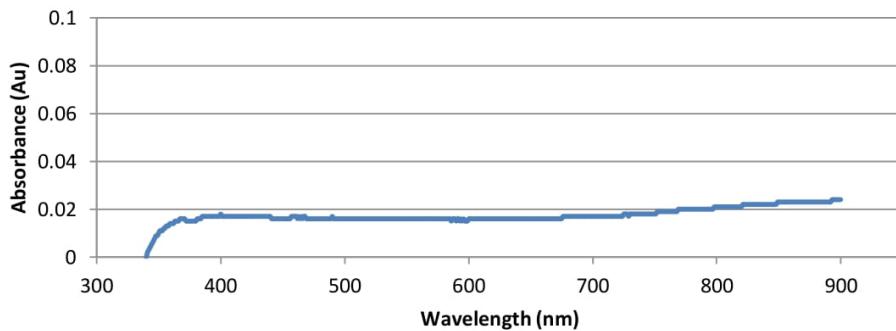
Herts

SG8 6PZ

Telephone: +44 1763 26 27 26

Email: info@bahsltd.com

Web: www.bahsltd.com



LABORATORY REPORT - Page 2 of 2

Client:	Nicholls Boreholes Brownings Barn Glass House Lane Kirdford RH14 0LW	Certificate No:	23240908-1
		Order No:	BH1491 BH1
		Date Reported:	23/01/2024
		Site Name:	BH1491
		Sample Desc:	BH1491

Test	Results	Limit	Units	Comment	Sample Details
E.coli	0	0	cfu/100ml		Sampling Date: 15/01/2024
Total Coliforms	55	0	cfu/100ml	*	Sampling Time: 14:09
Enterococci	0	0	cfu/100ml		Date Received: 16/01/2024
TVC 3 at 22°C	>300	no abnormal change	cfu/ml		Date Tested: 16/01/2024
TVC 2 at 37°C	>300		cfu/ml		

Absorbance vs. Wavelength

 Patrycja Malinowska
 Laboratory Manager

Disclaimers:

The results provided are not UKAS accredited and can only be used for non-regulatory purposes

* Denotes concentrations above UK drinking water standards

Denotes results which must be treated with caution due to sampling, transit or storage issues prior to delivery to laboratory

</> Denotes concentration found within sample below/above the equipment's detection level

∞ Indicates test has been repeated due to uncertainty or testing issues

\$ Indicates sample was tested outside of the stability period, validity of results may be affected

All analytical quality control associated with these results was satisfactory, details are available on request

B. A. Hydro Solutions Limited - 3 & 4 The Sidings - Station Road - Shepreth - Herts - SG8 6PZ - Tel: +44 1763 26 27 26 - Web: bahsltd.com

APPENDIX G.2– BH2 water quality results

South East Water Scientific Services
 3 Columbus Drive, Farnborough
 Hampshire, GU14 0NZ
 E-Mail: sales@southeastwater.co.uk
 Website: www.sewscientificsservices.co.uk

ANALYTICAL REPORT

Page 1 of 3

NICHOLLS BOREHOLES
Brownings Barn
Glasshouse Lane
Kirdford
West Sussex
RH14 0LW
Collected From: NEW HALL LANE, SMALL DOLE

Date Received: 21/08/2024

Certificate Number:

1296326-1 Final

Order Number:

BH1491 BH2

Date Reported:

16/09/2024

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4838353	Desc: RAW BOREHOLE Collect From: NEW HALL LANE, SMALL DOLE Order No: BH1491 BH2 Received Date: 21/08/2024 Tested Date: 21/08/2024 Sampling Date: 20/08/2024 08:00 Sample Type: GW : Ground Water Product: SS-DWREGS	255 245 225 calc 230 230 430 400 400 660 660 660 660 660 ext ext ext 3401 390 5413 765 745 745 745 740 740 740 740 3371 3545 3545 3545	Ammonium (Ammonia and Ammonium Ions) Nitrate Nitrite Nitrite/Nitrate Odour - Qualitative Odour - Quantitative Colony Count 3 Days at 22°C E coli Total Coliforms Colour Conductivity Hydrogen Ion (pH) Turbidity Acrylamide Epichloroydrin Vinyl Chloride Bromate Enterococci Total Cyanide Mercury Antimony Arsenic Selenium Boron Calcium Magnesium Sodium Fluoride 2,4,5-T 2,4-D Bentazone	<0.020 16.0 <0.004 0.320 None 0 >300 0 3 mpn/100ml <2 701 7.1 0.205 <0.006 <0.1 <0.113 <0.8 4 cfu/100ml <4.1 <0.04 <0.2 <1.0 <0.8 0.063 134.9 5.0 14.5 0.130 <0.007 <0.007 <0.007	mg/l mg/l mg/l mg/l mg/l cfu/ml mpn/100ml 0 mg/l Pt/Co uS/cm pH_unit NTU µg / l µg / l µg / l µg / l µg / l 0 µg / l µg / l µg / l µg / l mg/l mg/l mg/l mg/l µg / l µg / l µg / l	<0.500 <50.0 <0.500 <1.000 * * 0 <20 6.5 to 9.5 <4.000 <0.100 <0.10 <0.500 <10.0 F <50.0 <1.00 <5.0 <10.0 <10.0 *<10.0 <1.000 <200.0 <1.500 <0.100 <0.100 <0.100	

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non UKAS accredited test

A result of 0 cfu denotes none found in volume analysed

F - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018

ext - Analysis subcontracted to an external laboratory

1579

APPENDIX G.2 cont'd– BH2 water quality
 results

Page 2 of 3

Certificate Number: 1296326-1 Final

Order Number: BH1491 BH2

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4838353	Continued from Page 1	3545	Bromoxynil	<0.007	µg / l	<0.100	
		3545	Dicamba	<0.020	µg / l	<0.100	
		3545	Dichlorprop	<0.003	µg / l	<0.100	
		3545	Fluoroxypyr	<0.008	µg / l	<0.100	
		3545	MCPA	<0.008	µg / l	<0.100	
		3545	MCPB	<0.008	µg / l	<0.100	
		3545	Mecoprop (MCPP)	<0.005	µg / l	<0.100	
		3545	Triclopyr	<0.015	µg / l	<0.100	
		2587	Atrazine	<0.002	µg / l	<0.100	
		2587	Carbendazim	<0.001	µg / l	<0.100	
		2587	Carbetamide	<0.002	µg / l	<0.100	
		2587	Chlortoluron	<0.003	µg / l	<0.100	
		2587	Diuron	<0.004	µg / l	<0.100	
		2587	Epoxiconazole	<0.003	µg / l	<0.100	
		2587	Flutriafol	<0.003	µg / l	<0.100	
		2587	Isoproturon	<0.003	µg / l	<0.100	
		2587	Linuron	<0.003	µg / l	<0.100	
		2587	Oxadixyl	<0.003	µg / l	<0.100	
		2587	Pendimethalin	<0.007	µg / l	<0.100	
		2587	Prometryn	<0.002	µg / l	<0.100	
		2587	Propazine	<0.002	µg / l	<0.100	
		2587	Simazine	<0.003	µg / l	<0.100	
		2587	Terbutryn	<0.002	µg / l	<0.100	
		2587	Trietazine	<0.004	µg / l	<0.100	
		480	Benzo (a) pyrene	<0.003	µg / l	<0.010	
		480	Benzo(1,12)perylene	<0.003	µg / l		
		480	Benzo(11,12)fluoranthene	<0.003	µg / l		
		480	Benzo(3,4)fluoranthene	<0.003	µg / l		
		480	Indeno(1,2,3-cd)pyrene	<0.003	µg / l		
		calc	PAH Total	0.000	ug/l	<0.100	*
		775	1,1,1 Trichloroethane	<0.60	µg / l		
		775	1,2-Dichloroethane	<0.12	µg / l	<3.00	
		775	Benzene	<0.02	µg / l	<1.00	
		775	Dibromochloromethane	<0.50	µg / l		
		775	Dichlorobromomethane	<0.43	µg / l		
		775	Tetrachloroethene	<0.15	µg / l	<10.00	
		calc	Tetrachloroethene/Trichloroethene- Sum	0.00	µg / l		*
		775	Tetrachloromethane	<0.11	µg / l	<3.00	
		calc	Total Trihalomethanes	0.00	µg / l	<100.00	*
		775	Tribromomethane	<0.60	µg / l		
		775	Trichloroethene	<0.10	µg / l	<10.00	
		775	Trichloromethane	<0.50	µg / l		
		730	Aluminium	<6.1	µg / l	<200.0	
		730	Iron	<7.3	µg / l	<200.0	
		730	Manganese	<1.7	µg / l	<50.0	

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non UKAS accredited test

A result of 0 cfu denotes none found in volume analysed

F - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018

ext - Analysis subcontracted to an external laboratory

1579

APPENDIX G.2 cont'd– BH2 water quality
 results

Page 3 of 3

Certificate Number: 1296326-1 Final

Order Number: BH1491 BH2

Lab Ref.	Sample Details	Method	Test	Result	Units	Limit	Flag
4838353	Continued from Page 2	735	Cadmium	<0.12	µg / l	<5.00	
		735	Chromium	<0.5	µg / l	<50.0	
		730	First Draw Copper	<0.009	mg/l	<2.000	
		730	First Draw Lead	<0.9	µg / l	<10.0	
		730	First Draw Nickel	2.0	µg / l	<20.0	
		360	Clostridium perfringens (including spore)	0	cfu/100ml	0	
		calc	Pesticides - Total Substances	0.000	ug/l		*
		5823	Aldrin	<0.007	µg / l	<0.030	
		5823	Dichlobenil	<0.004	µg / l	<0.100	
		5823	Dieldrin	<0.006	µg / l	<0.030	
		5823	Gamma-HCH (Lindane)	<0.010	µg / l	<0.100	
		5823	Heptachlor	<0.009	µg / l	<0.030	
		5823	Heptachlor Epoxide	<0.005	µg / l	<0.030	
		5823	Propyzamide	<0.005	µg / l	<0.100	
		5823	Tri-allate	<0.005	µg / l	<0.100	
		730	Iron (Free)	<7.3	µg / l		
		calc	Hardness (CaCO ₃)	388.5	mg CaCO ₃ /l		*
		295	Gross Alpha	0.02	Bq/l	<0.10	
		295	Gross Beta	<0.28	Bq/l	<1.00	

 Richard Brown
 Laboratory Manager

Disclaimers:

Unless otherwise stated, all results apply to the sample as received. Information provided by the customer (includes Date, Time, Sample Matrix & Sample Description) can affect the validity of the result.

Opinions and interpretations expressed in this report are outside the scope of UKAS accreditation.

Details of Uncertainty of Measurement and Analytical Quality Control are available on request.

Where a statement of conformity to a Regulatory Standard or customer limit is provided, the uncertainty of measurement is not taken into account unless shown on the certificate.

* - denotes non UKAS accredited test

A result of 0 cfu denotes none found in volume analysed

F - Result Exceeds The Maximum Pcv As Defined In The Water Supply (Water Quality) (Amendment) Regulations 2018
 ext - Analysis subcontracted to an external laboratory

1579

APPENDIX G.2 cont'd– BH2 water quality
 results

B. A. Hydro Solutions Ltd.

3 & 4 The Sidings

Shepreth

Herts

SG8 6PZ

Telephone: +44 1763 26 27 26

Email: info@bahsltd.com

Web: www.bahsltd.com

LABORATORY REPORT - Page 1 of 2

Client:	Nicholls Boreholes Brownings Barn Glass House Lane Kirdford RH14 0LW	Certificate No:	23240908-2
		Order No:	BH1491 BH2
		Date Reported:	23/01/2024
		Site Name:	BH1491
		Sample Desc:	BH2

Test	Results	Limit	Units	Comment	Sample Details
Alkalinity	333	-	mg/l		
Aluminium	<20.00	200	µg/l		
Ammonium	<0.020	0.5	mg/l		
Boron	69	1000	µg/l		
Calcium	156.8	-	mg/l		
Chloride	27.1	250	mg/l		
Copper	<100.00	2000	µg/l		
Fluoride	<100.00	1500	ug/l		
Dissolved Iron (Fe II)	<10.00	-	µg/l		
Total Iron (FeII+FeIII)	50	200	µg/l		
Lead	<2.00	10	µg/l		
Magnesium	0.24	-	mg/l		
Manganese	<5.00	50	µg/l		
Nitrate	<22.00	50	mg/l		
Nitrite	<50.00	500	µg/l		
Nitrite/Nitrate	<0.46	≤1	-		
Phosphate	<0.15	-	mg/l		
Potassium	7.16	-	mg/l		
Sodium	39	200	mg/l		
Sulphate	40.7	250	mg/l		
Electrical Conductivity	751	2500	µS/cm		
Calcium Hardness	392	-	mg/l		
Total Hardness as CaCO ₃	393	-	mg/l	V Hard	
Magnesium Hardness	1	-	mg/l		
pH	6.95	6.5-9.5	pH units		
Total Dissolved Solids	367	-	mg/l		
Turbidity	0.38	4	NTU		

Disclaimers:

The results provided are not UKAS accredited and can only be used for non-regulatory purposes

* Denotes concentrations above UK drinking water standards

Denotes results which must be treated with caution due to sampling, transit or storage issues prior to delivery to laboratory

</> Denotes concentration found within sample below/above the equipment's detection level

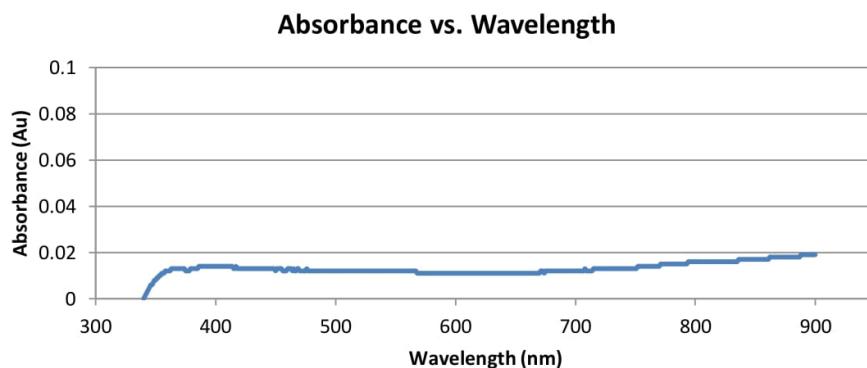
∞ Indicates test has been repeated due to uncertainty or testing issues

\$ Indicates sample was tested outside of the stability period, validity of results may be affected

All analytical quality control associated with these results was satisfactory, details are available on request

B. A. Hydro Solutions Limited - 3 & 4 The Sidings - Station Road - Shepreth - Herts - SG8 6PZ - Tel: +44 1763 26 27 26 - Web: bahsltd.com

APPENDIX G.2 cont'd – BH2 water quality
 results


B. A. Hydro Solutions Ltd.
3 & 4 The Sidings
Shepreth
Herts
SG8 6PZ
Telephone: +44 1763 26 27 26
Email: info@bahsltd.com
Web: www.bahsltd.com

LABORATORY REPORT - Page 2 of 2

Client:	Nicholls Boreholes Brownings Barn Glass House Lane Kirdford RH14 0LW	Certificate No:	23240908-2
		Order No:	BH1491 BH2
		Date Reported:	23/01/2024
		Site Name:	BH1491
		Sample Desc:	BH2

Test	Results	Limit	Units	Comment	Sample Details
E.coli	9	0	cfu/100ml	*	Sampling Date: 15/01/2024
Total Coliforms	9	0	cfu/100ml	*	Sampling Time: 14:10
Enterococci	0	0	cfu/100ml		Date Received: 16/01/2024
TVC 3 at 22°C	>300	no abnormal change	cfu/ml		Date Tested: 16/01/2024
TVC 2 at 37°C	35		cfu/ml		

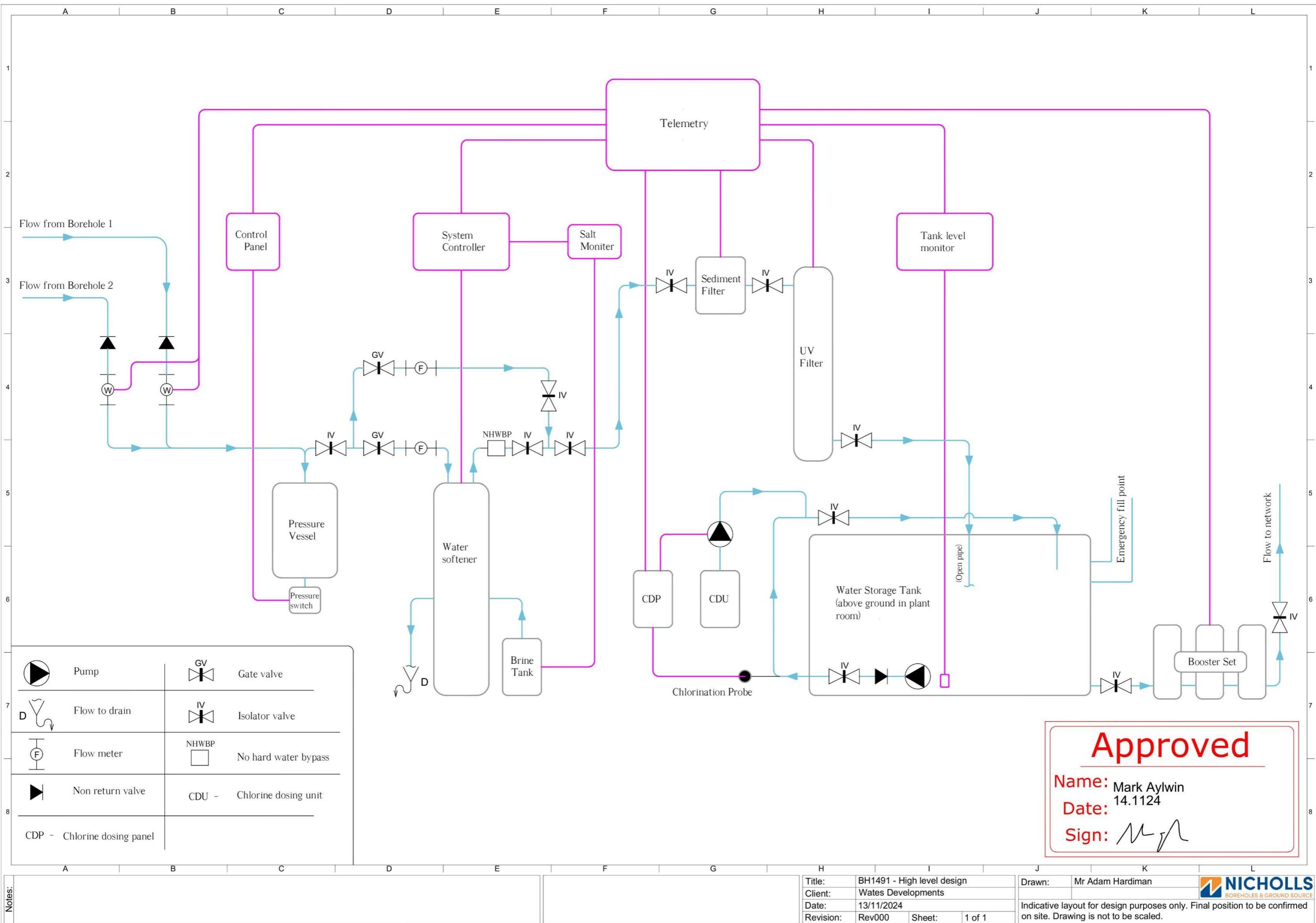
 Patrycja Malinowska
 Laboratory Manager

Disclaimers:

The results provided are not UKAS accredited and can only be used for non-regulatory purposes

* Denotes concentrations above UK drinking water standards

Denotes results which must be treated with caution due to sampling, transit or storage issues prior to delivery to laboratory


</> Denotes concentration found within sample below/above the equipment's detection level

∞ Indicates test has been repeated due to uncertainty or testing issues

§ Indicates sample was tested outside of the stability period, validity of results may be affected

All analytical quality control associated with these results was satisfactory, details are available on request

B. A. Hydro Solutions Limited - 3 & 4 The Sidings - Station Road - Shepreth - Herts - SG8 6PZ - Tel: +44 1763 26 27 26 - Web: bahsltd.com

