

TILCO

HAYES LANE, HORSHAM

AIR QUALITY ASSESSMENT

2025-09-04

AIR QUALITY SOLUTIONS LTD
AQ14927
PREPARED BY: WILL ARCHER
PREPARED FOR: STUART OLDROYD

AIR QUALITY SOLUTIONS

DISTRIBUTION LIST

Issued To	Company
Stuart Oldroyd	TILCo

QUALITY ASSURANCE

Issue / Revision	Issue	Revision 1	Revision 2
Remarks	Air Quality Assessment	Air Quality Assessment	
Date	2025-08-29	2025-09-04	
Prepared By	William Archer	William Archer	
Job Title	Air Quality Consultant	Air Quality Consultant	
Signature			
Reviewed By	Brendan McCormack	Brendan McCormack	
Job Title	Principal Air Quality Consultant	Principal Air Quality Consultant	
Signature			
Authorised By	Brendan McCormack	Brendan McCormack	
Job Title	Principal Air Quality Consultant	Principal Air Quality Consultant	
Signature			
Project Number	AQ14927	AQ14927	

TABLE OF CONTENTS

EXECUTIVE SUMMARY.....	4
1. INTRODUCTION.....	5
1.1 Background	5
1.2 Site Location and Assessment Context	5
1.3 Limitations	5
2. LEGISLATION, GUIDANCE AND POLICY	6
2.1 UK Legislation and Guidance.....	6
2.2 Local Air Quality Management.....	7
2.3 Local Planning Policy.....	8
3. METHODOLOGY	9
3.1 Construction Phase Assessment.....	9
3.2 Operational Phase Assessment	9
3.3 Air Quality Emissions Mitigation Assessment	10
4. BASELINE.....	11
4.1 Local Air Quality Management.....	11
4.2 Air Quality Monitoring	11
4.3 Background Pollutant Concentrations	11
4.4 Sensitive Receptors	12
5. ASSESSMENT.....	15
5.1 Construction Phase Assessment.....	15
5.2 Operational Phase Assessment	20
5.3 DEFRA Damage Cost Calculation	21
6. CONCLUSION.....	25
ABBREVIATIONS	26
APPENDIX A: FIGURES	27
APPENDIX B: ASSESSMENT INPUTS.....	36
APPENDIX C: CONSTRUCTION PHASE METHODOLOGY	73

EXECUTIVE SUMMARY

Air Quality Solutions were commissioned by TILCo to undertake an Air Quality Assessment in support of a proposed development at Hayes Lane, Slindfold, Horsham, RH13.

The proposal comprises the development of 38 residential dwellings.

Due to the scale of the development, there is the potential for the development to expose future site users to poor air quality, as well as to cause impacts at nearby sensitive receptors because of the construction and operational phases. Therefore, an Air Quality Assessment is required to determine baseline conditions at the site, assess site suitability for the proposed end-use and assess the potential impacts as a result of the proposed development.

Potential construction phase air quality impacts from fugitive dust emissions were assessed as a result of earthworks and construction activities. It is considered that the use of good practice control measures would provide suitable mitigation for a development of this size and nature and reduce potential impacts to an acceptable level.

Dispersion modelling was undertaken in order to predict annual mean pollutant concentrations across the application site to determine exposure risk to future occupiers. Results were subsequently verified using local monitoring results provided by Horsham District Council (HDC).

The dispersion modelling results indicated that annual mean pollutant concentrations across the application site were below the relevant air quality objectives at proposed sensitive locations.

The level of anticipated traffic generation from the site concluded that impacts on existing pollutant levels as a result of operational phase pollutant emissions were predicted to be not significant in accordance with relevant screening criteria. The use of robust assumptions, where necessary, was considered to provide sufficient confidence of results for an assessment of this nature.

There is also no onsite combustion plant associated with the Proposed Development. As a result, building emissions from combustion processes were also screened as not significant throughout the operational phase.

The Sussex Air Quality Partnership has developed 'Air Quality and Emissions Mitigation Guidance for Sussex' to improve air quality across the region. According to the guidance, the development is classified as major and an Air Quality Emissions Mitigation Assessment is required. The results indicated a total damage cost value of £3254.98 which can be offset using EV charging infrastructure, secure cycle storage and investments in walking/cycling infrastructure in accordance with Sussex emission mitigation guidance. It is considered that implementation of the measures would suitably offset impacts associated with the proposed development.

Based on the assessment results the site is considered suitable for the proposed end use with the implementation of air quality mitigation measures and complies with the HDC Local Plan and NPPF.

1. INTRODUCTION

1.1 Background

Air Quality Solutions has been commissioned by TILCo, hereafter referred to as “the Client” to undertake an Air Quality Assessment in support of a proposal, comprising the development of 38 residential dwellings, hereinafter referred to as the “Proposed Development”.

1.2 Site Location and Assessment Context

The application site is located at Hayes Lane, Slinfold, Horsham, RH13, at approximate National Grid Reference (NGR) 511820, 130664.

The application site is located 12024.1m from the Horsham Cowfold Air Quality Management Area (AQMA) which has been declared due to exceedances of NO₂ Air Quality Objective (AQO). Subsequently, the Proposed Development has low potential to introduce future occupants into an area of elevated NO₂ and particulate matter (PM₁₀ and PM_{2.5}) concentrations, as well as to cause impacts at sensitive receptor locations during the construction and operational phases.

An Air Quality Assessment has been produced to assess the potential for air quality impacts at existing sensitive use and to assess site suitability for the proposed end-use. The assessment will be undertaken in accordance with the requirements of the National Planning Policy Framework (NPPF) and the HDC Local Planning Policy.

Reference should be made to Figure 1 within Appendix A for a location plan.

1.3 Limitations

This report has been produced in accordance with Air Quality Solutions' standard terms of engagement. Air Quality Solutions has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from Air Quality Solutions; a charge may be levied against such approval.

2. LEGISLATION, GUIDANCE AND POLICY

The following legislation, guidance and policy will be considered and adhered to during the preparation of the Air Quality Assessment:

- European Union (EU) Directive 2008/50/EC;
- The National Planning Policy Framework (NPPF), updated on 12th December 2024;
- The National Planning Practice Guidance (NPPG), relevant chapters produced on 1st November 2019;
- Section 82 of the Environment Act (1995) (Part IV), updated 9th November 2021;
- Air Quality Strategy: Framework for local authority delivery, April 2023;
- The Air Quality Standards (Amendment) Regulations (2016);
- Local Air Quality Management Technical Guidance 2022 LAQM.TG(22), DEFRA, 2022;
- Guidance on the Assessment of Dust from Demolition and Construction, Institute of Air Quality Management (IAQM), January 2024;
- Land-Use Planning and Development Control: Planning for Air Quality, Environmental Protection UK (EPUK) and Institute of Air Quality Management (IAQM), January 2017;
- Environmental Improvement Plan 2023, DEFRA, February 2023;
- Horsham District Planning Framework (excluding South Downs National Park), November 2015; and
- Air Quality and Emissions Mitigation Guidance For Sussex, 2021.

2.1 UK Legislation and Guidance

The Air Quality Standards (Amendment) Regulations (2016) came into force on 31st December 2016. These Regulations amend the Air Quality Standards Regulations 2010 and transpose the EU Directive 2008/50/EC into UK law. Air Quality Limit Values (AQLVs) were published in these regulations for 7 pollutants, as well as Target Values for an additional 6 pollutants. It should be taken into consideration that the AQLV for PM_{2.5} stated in the Air Quality Standards Regulations (2010) was amended in the Environment (Miscellaneous Amendments) (EU Exit) Regulations (2020).

Part IV of the Environment Act (2021) requires the UK government to produce a national Air Quality Strategy (AQS) which contains standards, objectives and measures for improving ambient air quality. The most recent AQS was produced by DEFRA and published on 28th April 2023. The AQS sets out Air Quality Objectives (AQOs) that are maximum ambient pollutant concentrations that are not to be exceeded either without exception or with a permitted number of exceedances over a specified timescale. These are generally in line with the AQLVs, although the requirements for compliance vary slightly.

The Environmental Improvement Plan, released in January 2023, outlines both long-term and interim objectives aimed at minimising public exposure to PM_{2.5}. Following this, the 2040 concentration goal was established within the Environmental Targets (Fine Particulate Matter) Regulations (2023).

Table 1 presents the AQOs for pollutants considered within this assessment.

Table 1: Air Quality Objectives

Pollutant	Air Quality Objectives	
	Concentration (µg/m ³)	Averaging Periods
NO ₂	40	Annual mean
	200	1-hour mean; not to be exceeded more than 18 times a year
PM ₁₀	40	Annual mean
	50	24-hour mean; not to be exceeded more than 35 times a year

Pollutant	Air Quality Objectives	
	Concentration ($\mu\text{g}/\text{m}^3$)	Averaging Periods
PM _{2.5}	25 (12*)	Annual mean

*Interim Target to be achieved by end of January 2028.

Table 2 summarises the advice provided in LAQM.TG(22) on where the AQOs for pollutants considered within this report apply.

Table 2: Examples of Where the Air Quality Objectives Apply

Averaging Periods	Objectives Should Apply At	Objectives Should Not Apply At
Annual mean	All locations where members of the public might be regularly exposed: building façades of residential properties, schools, hospitals, care homes etc.	Building façades of offices or other places of work where members of the public do not have regular access: hotels, unless people live there as their permanent residence; gardens of residential properties; kerbside sites (as opposed to locations at the building façade); or any other location where public exposure is expected to be short term.
24-hour mean	All locations where the annual mean objective would apply, together with hotels and gardens of residential properties.	Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term.
1-hour mean	All locations where the annual mean and 24-hour mean objectives apply; kerbside sites (for example, pavements of busy shopping streets); those parts of car parks, bus stations and railway stations etc. which are not fully enclosed, where members of the public might reasonably be expected to spend one hour or more; any outdoor locations where members of the public might reasonably be expected to spend one hour or longer.	Kerbside sites where the public would not be expected to have regular access.

The results of the dispersion modelling assessment will also be compared against the relevant AQOs detailed in Table 1 to determine significance.

2.2 Local Air Quality Management

Under Section 82 of the Environment Act (2021) (Part IV), Local Authorities (LAs) are required to periodically review and assess air quality within their area of administration under the system of Local Air Quality Management (LAQM). This review and assessment of air quality involves considering present and likely future air quality against the AQOs. If it is predicted that levels at sensitive locations where members of the public are regularly present for the relevant averaging period are likely to be exceeded, the LA is required to declare an AQMA. For each AQMA the LA is required to produce an Air Quality Action Plan (AQAP), the objective of which is to reduce pollutant concentrations in pursuit of the AQOs.

2.3 Local Planning Policy

A review of the local policy indicated the following policy in relation to air quality that is relevant to this assessment:

Policy 24: Strategic Policy: Environmental Protection

The high quality of the district's environment will be protected through the planning process and the provision of local guidance documents. Taking into account any relevant Planning Guidance Documents, developments will be expected to minimise exposure to and the emission of pollutants including noise, odour, air and light pollution and ensure that they:

4. Minimise the air pollution and greenhouse gas emissions in order to protect human health and the environment;
5. Contribute to the implementation of local Air Quality Action Plans and do not conflict with its objectives;
6. Maintain or reduce the number of people exposed to poor air quality including odour. Consideration should be given to development that will result in new public exposure, particularly where vulnerable people (e.g. the elderly, care homes or schools) would be exposed to the areas of poor air quality)

Reference has been made to these policies during the undertaking of this Air Quality Assessment.

3. METHODOLOGY

3.1 Construction Phase Assessment

There is the potential for fugitive dust emissions to occur as a result of construction phase activities. These have been assessed in accordance with the methodology outlined within the IAQM document 'Guidance on the Assessment of Dust from Demolition and Construction'.

Reference should be made to Appendix C for details of the relevant IAQM construction phase assessment criteria, which were utilised in conjunction with site specific information.

Activities on the proposed construction site have been divided into the following types to reflect their different potential impacts. These are:

- Demolition
- Earthworks
- Construction
- Trackout

The potential for dust emissions was assessed for each activity that is likely to take place and considered three separate dust effects:

- Annoyance due to dust soiling
- Harm to ecological receptors
- The risk of health effects due to a significant increase in exposure to PM₁₀ and PM_{2.5}

A desktop survey will be undertaken to identify human and ecological receptors within the relevant assessment buffers specified by the IAQM guidance. Should sensitive receptors not be present within the relevant distances then negligible impacts would be expected and further assessment is not necessary.

Following the identification of sensitive receptors, a site is then allocated a risk category which is assigned to each activity, based on the scale and nature of the works, as well as the sensitivity of the area to dust impacts.

The assigned magnitude and sensitivity will then determine the overall risk and appropriate mitigation measures to be employed during construction phase activities.

3.2 Operational Phase Assessment

3.2.1 Future Exposure

The Proposed Development is located 12024.1m from the from Horsham Cowfold. As such, the proposals have low potential to introduce new receptors into an area of existing poor air quality, as well as to cause impacts upon existing pollution levels at nearby sensitive receptors within the AQMA.

Detailed dispersion modelling was therefore undertaken to quantify NO₂, PM₁₀ and PM_{2.5} pollutant exposure across the site and determine suitability for the proposed use. The following modelling scenarios were utilised during the assessment:

- 2023 as baseline year for verification against latest ratified data;
- 2028 do-something (DS) (predicted traffic flows in 2028 should the proposals be completed)

In light of expected emission improvements to the national vehicle fleet guided by government policy, it would be unrealistic not to assume a reduction to vehicle emission factors in future years, given the anticipated development year of 2028.

The 2028 scenario assumes an emission drop off based on assumptions provided by the Emission Factor Toolkit (Eft v12.0) supported by the uptake of low emission vehicles and government incentives and targets concerning fleet proportions by 2030.

The results of the dispersion modelling assessment will also be compared against the relevant AQOs detailed in Table 1 to determine significance. Full details of data used for the modelling assessment are presented in Appendix B of this report.

3.2.2 Road Vehicle Exhaust Impact Assessment

Based on the details of the Proposed Development and anticipated trip generation a screening assessment in accordance with the EPUK and IAQM guidance was determined a suitable assessment approach. The assessment will determine road traffic exhaust and combustion emission impacts associated with the Proposed Development and confirm the requirement for detailed assessment work. The EPUK and IAQM document states the following criteria to help establish when an air quality assessment is likely to be considered necessary:

- Proposals that will cause a change in Light Duty Vehicle (LDV) flows of more than 100 Annual Average Daily Traffic (AADT) within or adjacent to an AQMA or more than 500 elsewhere;
- Proposals that will cause a change in Heavy Duty Vehicle (HDV) flows of more than 25 AADT within or adjacent to an AQMA or more than 100 elsewhere;
- Proposals which include either a centralised plant using biofuel, a combustion plant with single or thermal input >300KWh or a standby emergency generator associated with a centralised energy centre; and
- Proposals which include combustion processes of any size.

Should the above criteria not be met, the EPUK and IAQM document considers air quality impacts associated with the scheme to be not significant and no further assessment is required. Conversely, should the criterion be exceeded it may be deemed necessary that further assessment is required.

3.3 Air Quality Emissions Mitigation Assessment

The DEFRA guidance states that new developments may be required to incorporate additional measures in order to offset emissions at an early stage. Offsetting measures must be proportional to the nature and scale of the proposed development and may be based on quantification of the emissions associated with a development. The DEFRA guidance outlines the damage cost analysis methodology as the below:

- Identify the additional trip rates (as trips/annum) generated by the proposed development (this information will normally be provided in the Transport Assessment);
- Assume an average distance travelled of 10km/trip;
- Calculate the additional emissions of Oxides of Nitrogen (NO_x) and particulate matter with an aerodynamic diameter of less than 10µm (PM_{2.5}) (tonne/annum), based on emissions factors in the Emissions Factor Toolkit (Version 12.1), and an assumption of an average speed of 50 km/h;
- Calculate emissions using the Emissions Factor Toolkit over a 5-year time frame;
- Use the latest DEFRA Damage Cost approach to provide a valuation of the excess emissions, using the currently applicable values for each pollutant; and
- Sum the NO_x and PM_{2.5} costs.

The sum calculated following the above methodology provides a basis for defining the financial commitment required for the offsetting of emissions associated with the scheme.

4. BASELINE

Existing air quality conditions in the vicinity of the application site were identified in order to provide a baseline for assessment. These are detailed in the following sections.

4.1 Local Air Quality Management

As required by the Environment Act (2021), Horsham District Council has undertaken a review and assessment of air quality within their area of administration. This process has indicated that annual mean concentrations of NO₂ are above the AQO within their administration. As such, AQMAs have been declared, the closest being described as:

- Horsham Cowfold AQMA

The application site is located 12024.1m from the Horsham Cowfold AQMA. As such there is low potential for the Proposed Development to introduce future site users into an area of elevated NO₂, and cause air quality impacts during the construction and operational phases. This has been considered within this report.

HDC has concluded that concentrations of all other pollutants considered within the AQS are currently below the relevant AQOs and as such no further AQMAs have been designated.

4.2 Air Quality Monitoring

Monitoring of pollutant concentrations is undertaken by HDC using Automatic and Diffusion Tube monitoring methods throughout their areas of administration. A review of most recent Air Quality Monitoring Data indicated that there are currently 1 automatic analyser and 3 diffusion tubes located within the vicinity of the Proposed Development, presented in Table 3.

Table 3: Monitoring Results

ID	Site Name	Type	Monitoring Method	NGR (m)		Distance to Site (m)	Pollutant	Annual Mean Concentration ($\mu\text{g}/\text{m}^3$)		
				X	Y			2021	2022	2023
4	Broadbridge Heath 1	Roadside	Diffusion Tube	514596	130556	2777.86	NO ₂	N/A	N/A	10.2
11	Horsham 8N	Roadside	Diffusion Tube	516648	130221	4846.08	NO ₂	20.7	19.9	18.7
26	Horsham 12.1	Roadside	Diffusion Tube	516853	130621	5032.92	NO ₂	N/A	N/A	20.1
HO2	Horsham Park Way	Roadside	Automatic	517487	130588	5665.22	NO ₂	21.1	17.7	16.2
							PM ₁₀	17.5	19.3	20.5
							PM _{2.5}	12.3	13.1	14.6

As indicated in Table 3, there were no exceedances of annual mean AQOs at the monitoring locations in recent years. Reference should be made to Figure 2 within Appendix A for a graphical representation of the monitoring locations.

4.3 Background Pollutant Concentrations

The total concentration of a pollutant consists of explicit local emission sources (such as roads and industrial sources) and the background component. The background component consists of indeterminate sources which are

transported into an area from further away by meteorological conditions. Background pollutant concentrations are therefore the ambient level of pollution that is not affected by local sources of pollution.

It is not usually practical to obtain a true representation of background levels in urban areas due to corruption by local sources; background levels used in assessments may contain a mixture of both sources.

Predictions of background pollutant concentrations on a 1km by 1km grid basis have been produced by DEFRA for the entire of the UK to assist LAs in their Review and Assessment of air quality. The Proposed Development site is located across grid square:

- NGR: 511500, 130500

Data for this location was downloaded from the DEFRA website. For the purpose of this assessment, background concentrations are summarised in Table 4 for the base year (2023) and the predicted development opening year (2028).

Table 4: Predicted Background Pollutant Concentrations

Pollutant	Predicted Background Concentration ($\mu\text{g}/\text{m}^3$)	
	2023	2028
NO _x	9.221083	7.882052
NO ₂	7.221582	6.22658
PM ₁₀	10.216071	9.809026
PM _{2.5}	6.272511	5.91483

As shown in Table 4, background concentrations of all pollutants are below the relevant AQOs detailed in Table 1.

4.4 Sensitive Receptors

A sensitive receptor is defined as any location which may be affected by changes in air quality as a result of a development. These have been defined for construction dust impacts in the following Sections.

4.4.1 Construction Phase Sensitive Receptors

There are no nationally or European designated ecological receptors within 50m of the Site boundary, or within 50m from a route used by construction vehicles on the public highway (up to 250m from the Site entrance(s)). Therefore, the risk of dust effects at a nationally or European designated ecological receptor site from construction impacts have not been considered further in this assessment.

Human receptors sensitive to potential dust impacts during earthworks and construction were identified from a desk-top study of the area up to 250m from the Proposed Development boundary. These are summarised in Table 5.

Table 5: Construction Phase Dust Sensitive Receptors

Distance from Site Boundary (m)	Approximate Number of Human Receptors
Less than 20	10 - 100
20 - 50m	10 - 100
50 - 100m	10 - 100

Distance from Site Boundary (m)	Approximate Number of Human Receptors
100 - 250m	More than 100

Reference should be made to Figure 3 within Appendix A for a graphical representation of construction phase dust buffer zones.

Receptors sensitive to potential dust impacts from trackout were identified from a desk-top study of the area up to 50m from the road network within 250m of the site access route. These are summarised in Table 6. The exact construction vehicle access routes were not available for the purpose of this assessment as they will depend on sourcing of materials. This is likely to be decided by the contractor. However, it was assumed that construction traffic would access the Proposed Development via Hayes Lane, to ensure a worst case trackout assessment is undertaken.

Table 6: Trackout Dust Sensitive Receptors

Distance from Trackout Routes (m)	Approximate Number of Human Receptors
Less than 20	10 - 100
20 - 50m	10 - 100

Reference should be made to Figure 4 within Appendix A for a graphical representation of trackout dust buffer zones. A number of additional factors have been considered when determining the sensitivity of the surrounding area. These are summarised in Table 7.

Table 7: Additional Area Sensitivity Factors

Guidance	Comment
Whether there is any history of dust generating activities in the area	The site is located in a High sensitivity area. There is likely to have been a history of dust generating activities due to commuting, development and agricultural processes in the locality.
The likelihood of concurrent dust generating activity on nearby sites.	A review of the HDC Planning Portal indicated that there are planning applications within 500m of the Proposed Development. As such, there is potential for concurrent dust generation to occur should the construction phases of the aforementioned developments overlap.
Pre-existing screening between the source and the receptors	There is vegetation present along the boundaries of the site. If retained, this could provide little natural protective screening to receptors in these directions.
Conclusions drawn from analysing local meteorological data which accurately represent the area: and if relevant the season during which works will take place	The wind direction is predominantly from the South West of the development. As such, properties to the North East of the site would be most affected by dust emissions.
Conclusions drawn from local topography	The topography of the area appears to be predominantly flat. As such, there are no constraints to dust dispersion.

Guidance	Comment
Duration of the potential impact, as a receptor may become more sensitive over time	Currently the duration of the construction phase is unknown.
Any known specific receptor sensitivities which go beyond the classifications given in the document.	No specific receptor sensitivities identified during the baseline.

4.4.2 Operational Phase Sensitive Receptors

A desk top study was undertaken to identify the closest receptor locations to the application site. This indicated residential locations within close proximity to development boundaries. There are no educational or medical facilities in the vicinity of the application site and affected road networks.

5. ASSESSMENT

5.1 Construction Phase Assessment

5.1.1 Step 1 – Screening

The undertaking of activities such as excavation, ground works, cutting, construction, concrete batching and storage of materials has the potential to result in fugitive dust emissions throughout the construction phase. Vehicle movements both on-site and on the local road network also have the potential to result in the re-suspension of dust from haul road and highway surfaces.

The desk-study detailed in Section 4.4 identified a number of receptors with a high classification of sensitivity within 250m of the site boundary, and within 50m of the anticipated trackout routes. As such, a detailed assessment of potential dust impacts was required, and summarised in the below sections.

Reference should be made to Appendix C for details of the relevant IAQM construction phase assessment criteria, which were utilised in conjunction with site specific information.

5.1.2 Step 2A – Magnitude

The scale and nature of the works was determined to assess the magnitude of dust arising from each construction phase activity. The determination of magnitude was based upon the criteria detailed in Appendix C, with the outcome of Step 2A is summarised below in Table 8.

Demolition

Demolition was not required for this project, and thus, it is not anticipated that air quality impacts would arise as a result of demolition activities.

Earthworks

Earthworks was required for this project but no detailed description was given. The area of the site is between 18,000m² to 110,000m². As such, the magnitude of potential dust emissions related to earthwork activities is considered Medium.

Construction

Construction was required for this project but no detailed description was given. Given the scale of the Proposed Development the total building and infrastructure volume is between 12,000m³ to 75,000m³. As such, the magnitude of potential dust emissions related to construction activities is considered Medium.

Trackout

Information on the number of HDV trips to be generated during the construction phase of the Proposed Development was not available at the time of assessment. Similarly, the surface material and unpaved road length was not known at this stage of the project. Based on the site area, it is anticipated that the unpaved road length is likely to be greater than 100m. The magnitude of potential dust emissions from trackout is therefore considered Large.

Table 8: Dust Emission Magnitude

Magnitude of Activities		
Earthworks	Construction	Trackout
Medium	Medium	Large

5.1.3 Step 2B – Sensitivity

The next step (Step 2B) is to determine the sensitivity of the surrounding area, based on general principles such as amenity and aesthetics, as well as human exposure sensitivity.

Dust Soiling

As shown in Section 4.4.1, the desktop study indicated approximately more than 100 sensitive receptors within 250m of the Proposed Development boundary and 10 - 100 within 50m of the anticipated trackout routes.

Based on the assessment criteria detailed in Appendix C, the sensitivity of the receiving environment to potential dust soiling impacts was considered to be High for all construction phase activities. This is because the site is situated in a predominantly High sensitivity area, and the people would reasonably be expected to be present here for extended periods of time.

Human Health

The annual mean concentration of PM₁₀ is 10.22µg/m³ as detailed in Section 4. Based on the receptor counts provided above, the area is considered to be of Low for all construction phase activities.

The sensitivity of the receiving environment to specific potential dust impacts, based on the criteria detailed in Appendix C is summarised in Table 9.

Table 9: Sensitivity of the Surrounding Area

Potential Impact	Sensitivity of the Surrounding Area		
	Earthworks	Construction	Trackout
Dust Soiling	High	High	High
Human Health	Low	Low	Low
Ecological	Negligible	Negligible	Negligible

5.1.4 Step 2C – Risk

Both the magnitude and sensitivity factors are combined in Step 2C to determine the risk of dust impacts without the application of best practice mitigation measures.

It should be noted that the potential for impacts depends significantly on the distance between the dust generating activity and receptor location. Risk was predicted based on a worst-case scenario of works being undertaken at the site boundary closest to each sensitive area. Therefore, actual risk is likely to be lower than that predicted during the majority of the construction phase. A summary of the risk from each dust generating activity is provided in Table 10.

Table 10: Summary of Potential Unmitigated Dust Risks

Potential Impact	Risk		
	Earthworks	Construction	Trackout
Dust Soiling	Medium	Medium	High
Human Health	Low	Low	Low
Ecological	Negligible	Negligible	Negligible

5.1.5 Step 3 – Mitigation

The IAQM guidance provides a number of potential mitigation measures to reduce impacts during the construction phase. These measures have been adapted for the Proposed Development site as summarised in Table 11.

Table 11: Fugitive Dust Mitigation Measures

Issue	Control Measure
Communication	<ul style="list-style-type: none"> Develop and implement a stakeholder communications plan that includes community engagement before work commences on site. Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager. Display the head or regional office contact information. Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the Local Authority. The level of detail will depend on the risk, and should include as a minimum the highly recommended measures in this document. The desirable measures should be included as appropriate for the site.
Site Management	<ul style="list-style-type: none"> Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken. Make the complaints log available to the local authority when asked. Record any exceptional incidents that cause dust and/or air emissions, either on- or off-site, and the action taken to resolve the situation in the log book. Hold regular liaison meetings with other high risk construction sites within 250 m of the site boundary, to ensure plans are co-ordinated and dust and particulate matter emissions are minimised. It is important to understand the interactions of the off-site transport/deliveries which might be using the same strategic road network routes.
Monitoring	<ul style="list-style-type: none"> Undertake daily on-site and off-site inspection, where receptors (including roads) are nearby, to monitor dust, record inspection

Issue	Control Measure
	<p>results, and make the log available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars and window sills within 100 m of site boundary, with cleaning to be provided if necessary.</p> <ul style="list-style-type: none">• Carry out regular site inspections to monitor compliance with the DMP, record inspection results, and make an inspection log available to the local authority when asked.• Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.• Agree dust deposition, dust flux, or real-time PM10 continuous monitoring locations with the Local Authority. Where possible commence baseline monitoring at least three months before work commences on site or, if it a large site, before work on a phase commences. Further guidance is provided by IAQM on monitoring during demolition, earthworks and construction.
Preparing and Maintaining the Site	<ul style="list-style-type: none">• Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.• Erect solid screens or barriers around dusty activities or the site boundary that are at least as high as any stockpiles on site.• Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period.• Avoid site runoff of water or mud.• Keep site fencing, barriers and scaffolding clean using wet methods.• Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used on-site cover as described below.• Cover, seed or fence stockpiles to prevent wind whipping.
Operating vehicle/machinery and sustainable travel	<ul style="list-style-type: none">• Ensure all vehicles switch off engines when stationary - no idling vehicles.• Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.• Impose and signpost a maximum-speed-limit of 15 mph on surfaced and 10 mph on unsurfaced haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the local authority, where appropriate).• Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.• Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking, and car-sharing).
Operations	<ul style="list-style-type: none">• Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems.

Issue	Control Measure
	<ul style="list-style-type: none">• Ensure an adequate water supply on the site for effective dust/particulate matter suppression/ mitigation, using non-potable water where possible and appropriate.• Use enclosed chutes and conveyors and covered skips.• Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate.• Ensure equipment is readily available on site to clean any dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.
Waste Management	<ul style="list-style-type: none">• Avoid bonfires and burning of waste materials.
Earthworks	<ul style="list-style-type: none">• Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.• Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable.• Only remove the cover in small areas during work and not all at once.
Construction	<ul style="list-style-type: none">• Avoid scabbling (roughening of concrete surfaces) if possible.• Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place.• Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.• For smaller supplies of fine powder materials ensure bags are sealed after use and stored appropriately to prevent dust
Trackout	<ul style="list-style-type: none">• Use water-assisted dust sweeper(s) on the access and local roads, to remove, as necessary, any material tracked out of the site. This may require the sweeper being continuously in use.• Avoid dry sweeping of large areas.• Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.• Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.• Record all inspections of haul routes and any subsequent action in a site log book.• Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.• Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).• Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits.

Issue	Control Measure
	<ul style="list-style-type: none">Access gates to be located at least 10m from receptors where possible.

5.1.6 Step 4 – Residual Impacts

Assuming the relevant mitigation measures outlined in Table 11 are implemented, the residual effect from all dust generating activities is predicted to be negligible and therefore **not significant** in accordance with the IAQM guidance.

5.2 Operational Phase Assessment

The assessment was undertaken in accordance with the methodology detailed in Section 3.2.

5.2.1 Future Exposure

Annual mean NO₂, PM₁₀ and PM_{2.5} concentrations were predicted across the Proposed Development for the 2028 DS scenario at a height of 1.5m to represent exposure across the ground floor level, as shown in Figures 7 to 9 within Appendix A.

Background NO₂ PM₁₀ and PM_{2.5} levels are likely to be lower at elevated heights due to increased distance from emission sources, such as roads. Therefore, predicted concentrations at heights above ground floor level are considered acceptable in regards to future exposure and have not been assessed further.

Nitrogen Dioxide (NO₂)

Predicted annual mean NO₂ concentrations across the Proposed Development site during the DS scenario are summarised in Table 12.

Table 12: Modelling Results - Annual Mean NO₂ at Proposed Development

Floor Level	Predicted 2028 Annual Mean NO ₂ Concentration (µg/m ³)
Ground (1.5m)	6.35 - 6.47

The predicted concentrations shown in Table 12 indicate that there were no exceedances of the AQO across the Proposed Development. As such, it is considered that annual mean NO₂ levels at the Proposed Development site should not be viewed as a constraint to development.

Predictions of 1-hour NO₂ concentrations were not produced as part of the dispersion modelling assessment. LAQM.TG(22) states if annual mean NO₂ concentrations are below 60µg/m³ then it is unlikely that the 1-hour AQO will be exceeded. As such, based on the results in Table 12, it is not predicted that on-site concentrations will exceed the 1-hour mean AQO for NO₂.

Based on the results of the dispersion modelling assessment, the site is considered to be suitable for residential use.

Particulate Matter (PM₁₀ & PM_{2.5})

Predicted annual mean PM₁₀ and PM_{2.5} concentrations across the Proposed Development site during the DS scenario are summarised in Table 13.

Table 13: Modelling Results - Annual Mean PM₁₀ and PM_{2.5} at Proposed Development

Floor Level	Predicted 2028 Annual Mean Concentration (µg/m ³)	
	PM ₁₀	PM _{2.5}
Ground (1.5m)	9.87 - 9.94	5.95 – 5.99

The predicted concentrations shown in Table 13 indicate that there were no exceedances of the AQO across the Proposed Development. As such, it is considered that annual mean PM₁₀ and PM_{2.5} levels at the Proposed Development site should not be viewed as a constraint to development.

Based on the results of the dispersion modelling assessment, the site is considered to be suitable for residential use.

5.2.2 Road Vehicle Exhaust Emission Impacts

Any additional vehicle movements associated with the proposed development will generate exhaust emissions, such as NO₂, PM₁₀ and PM_{2.5} on the local and regional road networks.

It is considered that the operational phase of the site will not result in a change of AADT flows of more than 500, produce over 100 HDV movements per day or significantly affect average speeds on the local road network.

Subsequently, potential air quality impacts associated with operational phase road vehicle exhaust emissions are predicted to be **not significant** in accordance with the EPUK and IAQM screening criteria shown in Section 3.2.2.

5.2.3 Combustion Emission Impacts

There is no scope within the development to provide any form of combustion plant. As such, potential air quality impacts associated with operational phase combustion emissions are therefore predicted to be not significant.

5.3 DEFRA Damage Cost Calculation

5.3.1 Emission Mitigation Assessment

The Sussex Air Quality Partnership has developed 'Air Quality and Emissions Mitigation Guidance for Sussex' to improve air quality across Sussex and encourage emissions reduction to improve the environment and health of the population.

The guidance provides a methodology for determining the scale of a development and outlines the required air quality mitigation. Review of the criteria indicated the proposals were classified as major as the number of dwellings to be provided is 10 or more. Based on the development classification, an Air Quality Emissions Mitigation Assessment is required

The Air Quality Emissions Mitigation Assessment was used to inform the level of mitigation required for the Proposed Development and demonstrate that the emission mitigation measures are proportionate to the damage costs.

5.3.2 Road Traffic Emissions

Based on the DEFRA guidance, the Emissions Factor Toolkit (version 13.1) was used in order to calculate the additional emissions of NO_x and PM_{2.5} (tonnes/annum) as a result of road vehicle exhaust emission associated with the Proposed Development.

For the calculation, the additional trip generation for the Proposed Development was estimated based on the size of the development. This indicated a total development AADT flow of 205 with no associated Heavy-Duty Vehicle (HDV) movements during the operational phase. This figure was utilised whilst undertaking the damage cost calculation.

Details of the development traffic data and parameters including average speeds and link length are summarised in Table 14.

Table 14: Road Traffic Emission Factor Toolkit Inputs

AADT	%HDV	Speed (kph)	Link Length (km)
205	0	50	10

5.3.3 Total Development Emissions

Measures aimed to improve the efficiency of vehicles, including electric and hybrid fleets, are to be introduced throughout the UK and as such, vehicle pollutant emissions are predicted to reduce over time. The calculated NO_x and PM_{2.5} emissions (tonnes/annum) as a result of the operational phase of the Proposed Development are summarised in Table 15.

Table 15: Development Emissions per Year

Year	NO _x Emissions (tonnes/annum)	PM _{2.5} Emissions (tonnes/annum)
2030	0.068006129	0.012814601
2031	0.057939865	0.012757426
2032	0.049652459	0.012712890
2033	0.043101802	0.012673444
2034	0.038151449	0.012637697

The DEFRA guidance provides a variety of damage cost values dependant on the pollutants emitted from a development, as well as considerations to geographical contexts. For the purpose of the assessment, Road Transport Rural Central damage costings were used and are considered representative of the Proposed Development and surrounding area. The following calculation was undertaken using the most recent DEFRA damage costs released in March 2023 summarised in Table 16.

Table 16: 2022 Damage Costs

Pollutant	Road Transport Rural (£/tonne)
NO _x	4,921
PM _{2.5}	31,972

In accordance with the Air quality and emissions mitigation guidance for Sussex, total costs were calculated by multiplying the EFT Output for the midpoint year of 2032 with the central present values for Road Transport Rural source over a 5-year period:

5 Year Exposure Cost Value = EFT Output x Damage Costs x 5

The Proposed Development damage costs per year are summarised in Table 17.

Table 17: Development Air Quality Damage Costs

Year	Road NO _x (£/tonne)	Road PM _{2.5} (£/tonne)
2032	244.3397489	406.4565298
5-years	1221.698745	2032.282649

The final damage costs are summarised in Table 18.

Table 18: Development Air Quality Damage Costs - 5-Year Time Frame

Pollutant	Development Damage Costs (£)
NO _x	1221.698745
PM _{2.5}	2032.282649
Total	3254.98

As outlined in Table 18, the total damage cost for the Proposed Development was calculated at **£3254.98**. This cost should be used as an indicator to the level of emissions offsetting measures required as part of the Proposed Development scheme. These may include on site and/or off-site measures.

5.3.4 Potential Mitigation Measures

Table 19 shows the objective and indicative costings of potential mitigation measures which are deemed suitable for the proposed development. The findings below show mitigation measures that are already planned to be put in place. Please note the cost are indicative and may be subject to change when applied to real world scenarios.

Table 19: Mitigation Measures and Indicative Costings

Mitigation Measure	Description	Quantity	Estimated Costing per Unit	Estimated Costing
<i>Electric Vehicle Charging Infrastructure</i>	<i>Every home will have an electric vehicle charging point</i>	38	£800	£30,400
<i>Cycle Storage</i>	<i>All homes will have secure covered cycle storage.</i>	4	£3000 for a 10-space shelter	£12,000
<i>Investment in local walking and cycling infrastructure</i>	<i>Enhance the existing footpath that crosses the site and link it to the major cycleway to the north of the site</i>	300	£120 per meter	£36,000

Mitigation Measure	Description	Quantity	Estimated Costing per Unit	Estimated Costing
<i>Total</i>				£78,400

As shown in the indicative costings above, the planned mitigation is greater than the DEFRA Damage Cost value and as such, it is considered that implementation of the above measures would suitably reduce potential effects associated with the proposed development.

6. CONCLUSION

Air Quality Solutions were commissioned by TILCo to undertake an Air Quality Assessment in support of a proposed residential development at Hayes Lane, Slindfold, Horsham, RH13.

During the construction phase of the Proposed Development there is the potential for air quality impacts as a result of fugitive dust emissions from the site. These were assessed in accordance with the IAQM methodology. Assuming good practice dust control measures are implemented, the residual potential air quality impacts from dust generated by earthworks and construction and trackout activities was predicted to be **not significant**.

Dispersion modelling was undertaken to quantify annual mean NO₂, PM₁₀ and PM_{2.5} concentrations across the application to assess suitability for proposed use. Modelling results were subsequently verified using local monitoring data.

The dispersion modelling results indicated that annual mean NO₂, PM₁₀ and PM_{2.5} concentrations across the application site were **below** the relevant AQOs at the proposed sensitive use.

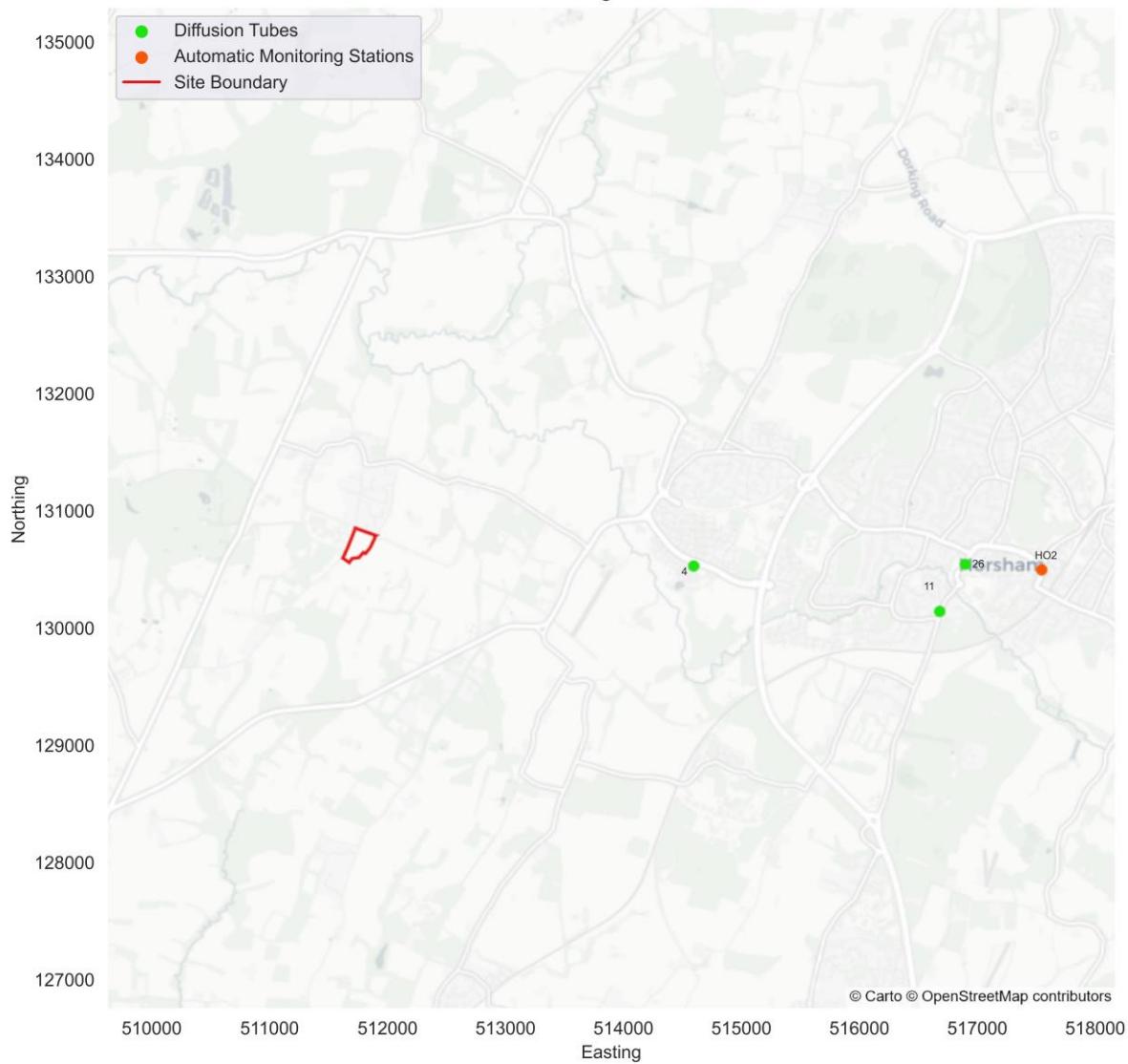
An assessment was undertaken using the EPUK and IAQM screening criteria to determine the potential for vehicle trips generated by the Proposed Development to affect local air quality. The traffic data indicated that operational traffic flows are **below** the relevant EPUK and IAQM assessment thresholds.

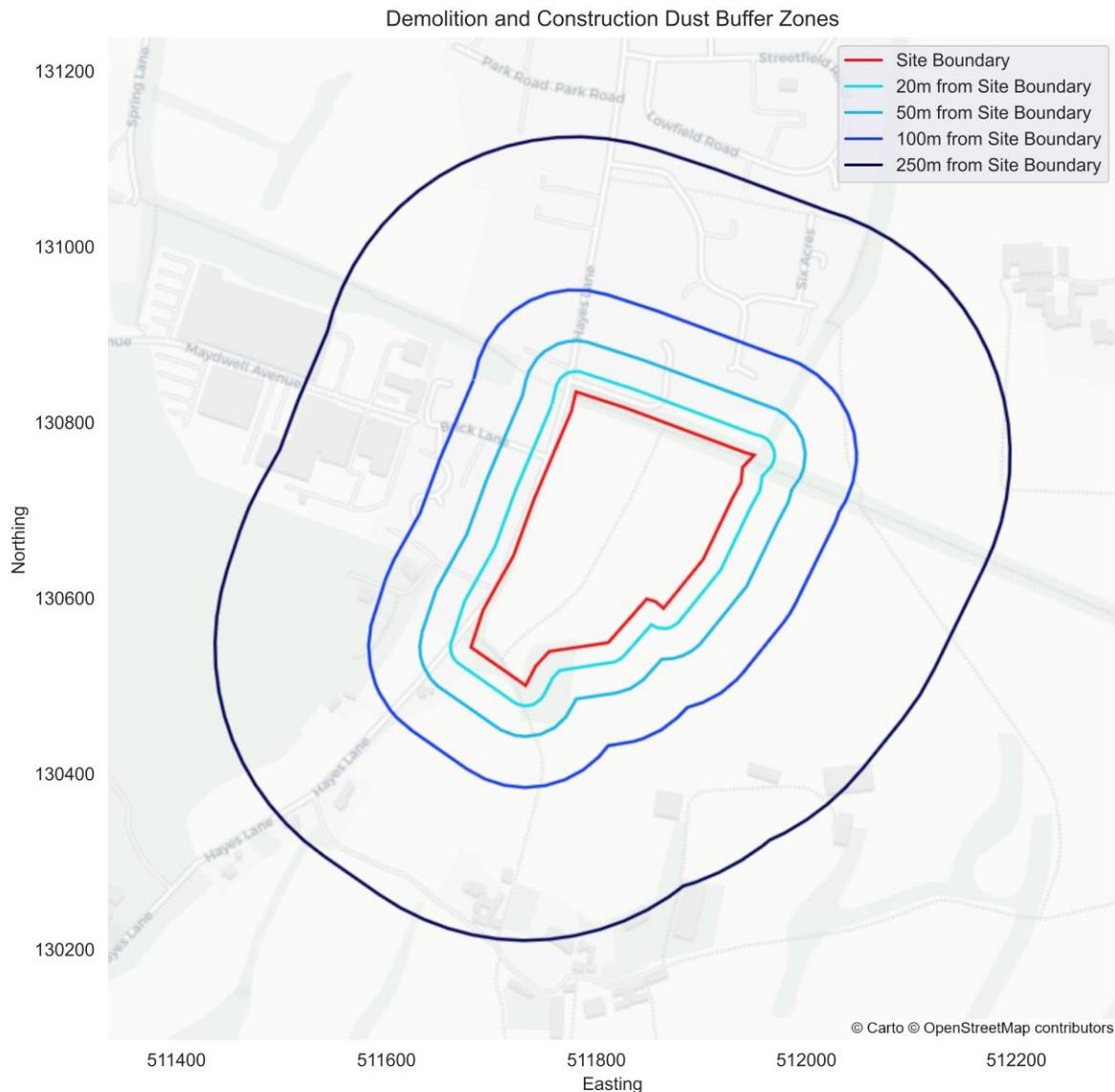
There is also no onsite combustion plant associated with the Proposed Development. As a result, building emissions from combustion processes were also screened as not significant throughout the operational phase.

The Sussex Air Quality Partnership has developed 'Air Quality and Emissions Mitigation Guidance for Sussex' to improve air quality across the region. According to the guidance, the development is classified as major and an Air Quality Emissions Mitigation Assessment is required. The results indicated a total damage cost value of £3254.98 which can be offset using EV charging infrastructure, secure cycle storage and investments in walking/cycling infrastructure in accordance with Sussex emission mitigation guidance. It is considered that implementation of the measures would suitably offset impacts associated with the proposed development.

Based on the assessment results the site is considered suitable for the proposed end use with the implementation of air quality mitigation measures and complies with the HDC Local Plan and NPPF.

ABBREVIATIONS


HDC	Horsham District Council
AADT	Annual Average Daily Traffic
ADM	Atmospheric Dispersion Modelling
APEC	Air Pollution Exposure Criteria
AQLV	Air Quality Limit Value
AQMA	Air Quality Management Area
AQO	Air Quality Objectives
AQS	Air Quality Strategy
CERC	Cambridge Environmental Research Consultants
DEFRA	Department for Environment, Food and Rural Affairs
DfT	Department for Transport
DM	Do Minimum
DS	Do Something
DMP	Dust Management Plan
EPUK	Environmental Protection UK
EU	European Union
GIA	Gross Internal Area
HDV	Heavy Duty Vehicle
IAQM	Institute of Air Quality Management
LAQM	Local Air Quality Management
LA	Local Authority
LDV	Light Duty Vehicle
NGR	National Grid Reference
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
NPPF	National Planning Policy Framework
NPPG	National Planning Practice Guidance
PM _{2.5}	Particulate matter with an aerodynamic diameter of less than 2.5µm
PM ₁₀	Particulate matter with an aerodynamic diameter of less than 10µm
TEMPRO	Trip End Model Presentation Program
z ₀	Roughness Length


END OF REPORT

APPENDIX A: FIGURES

Figure 2
Monitoring Locations

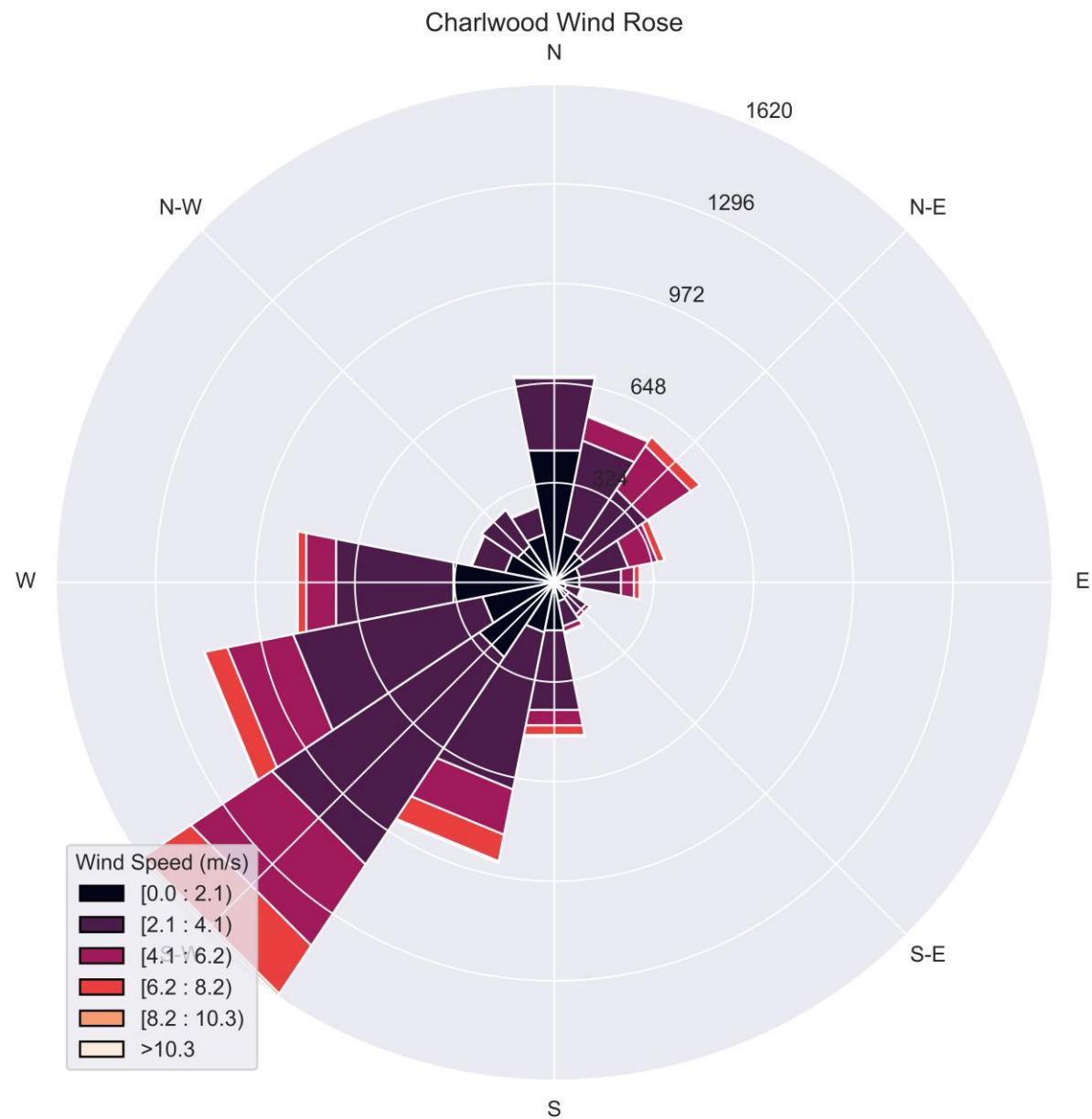
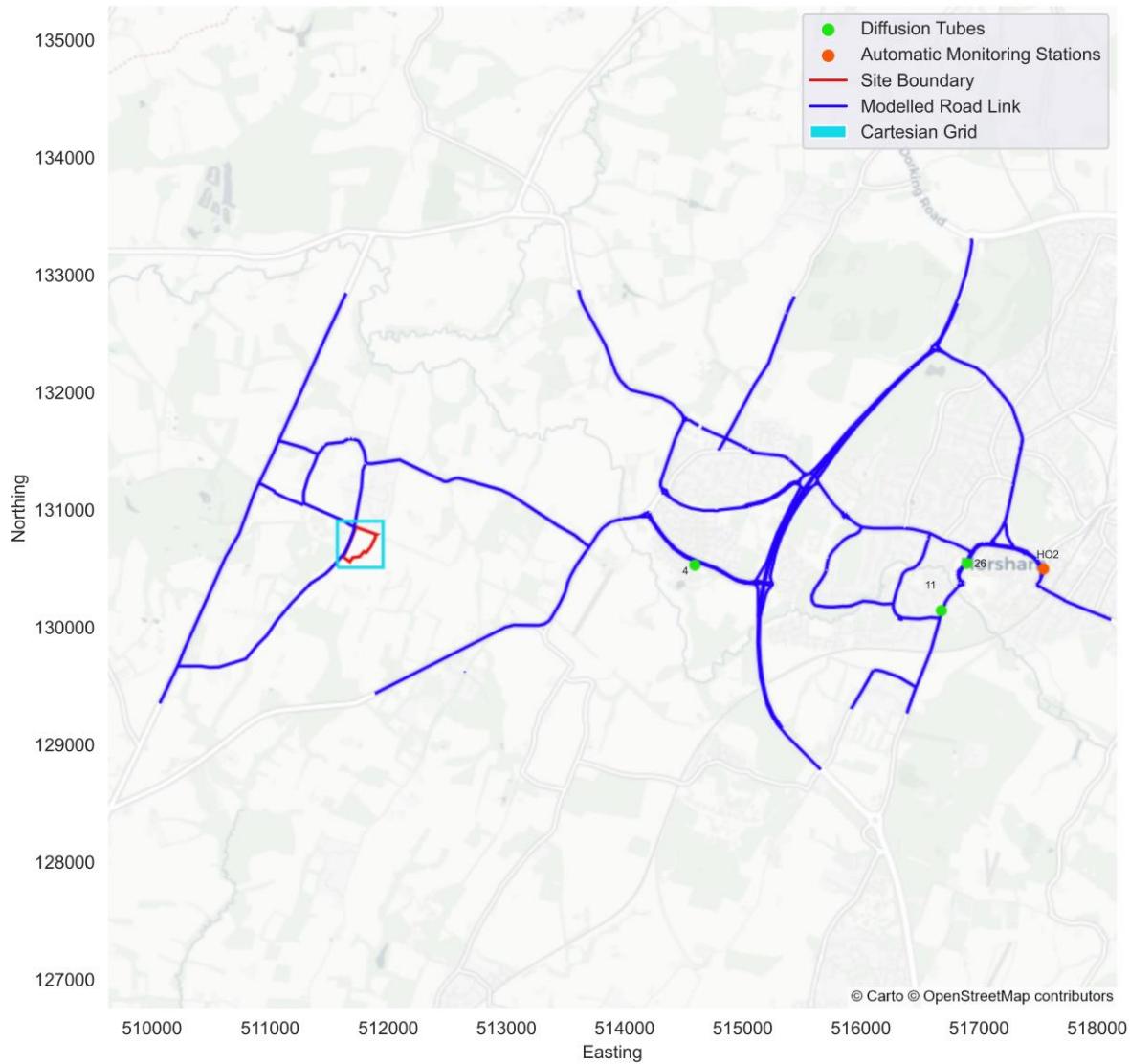
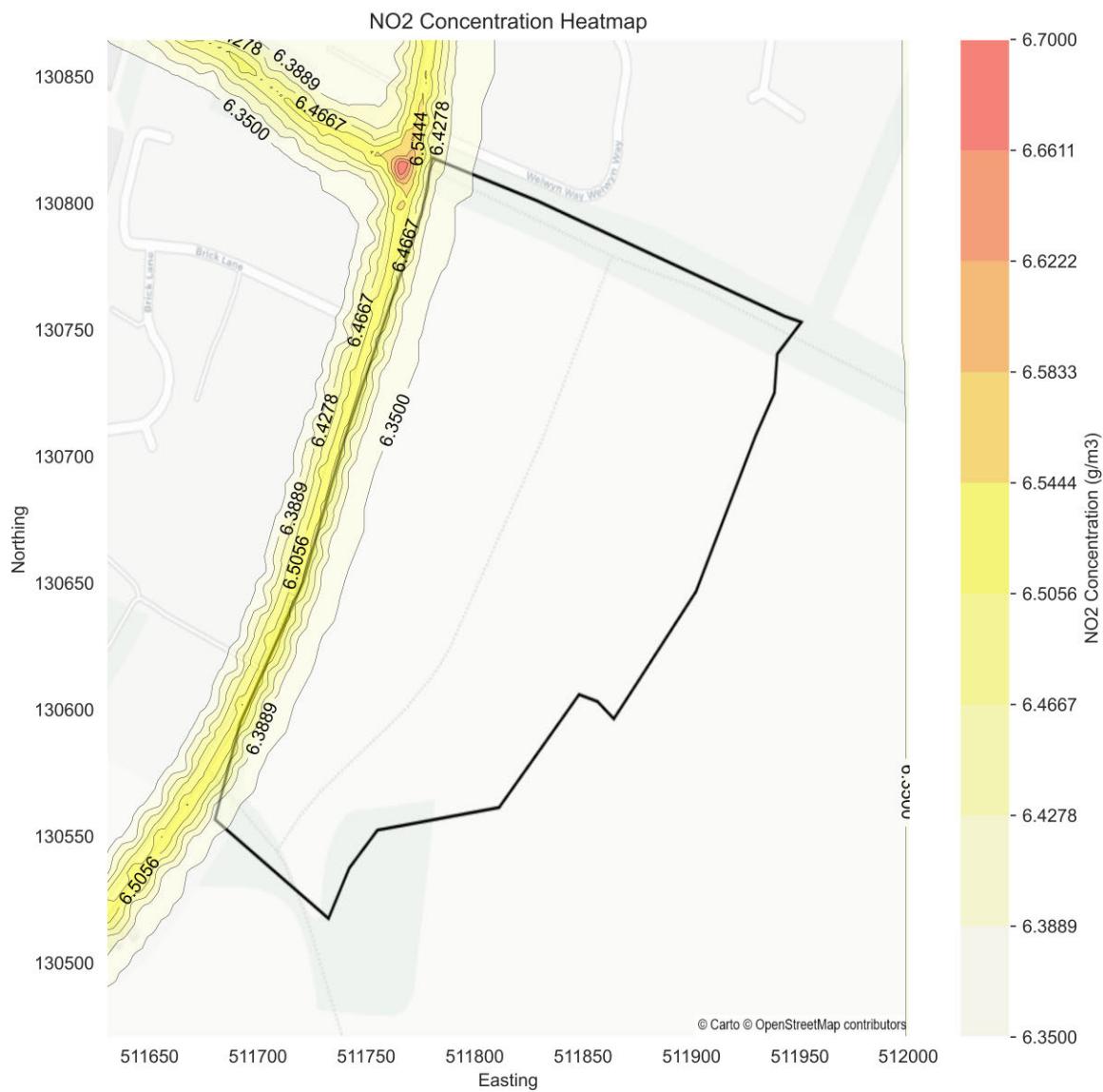
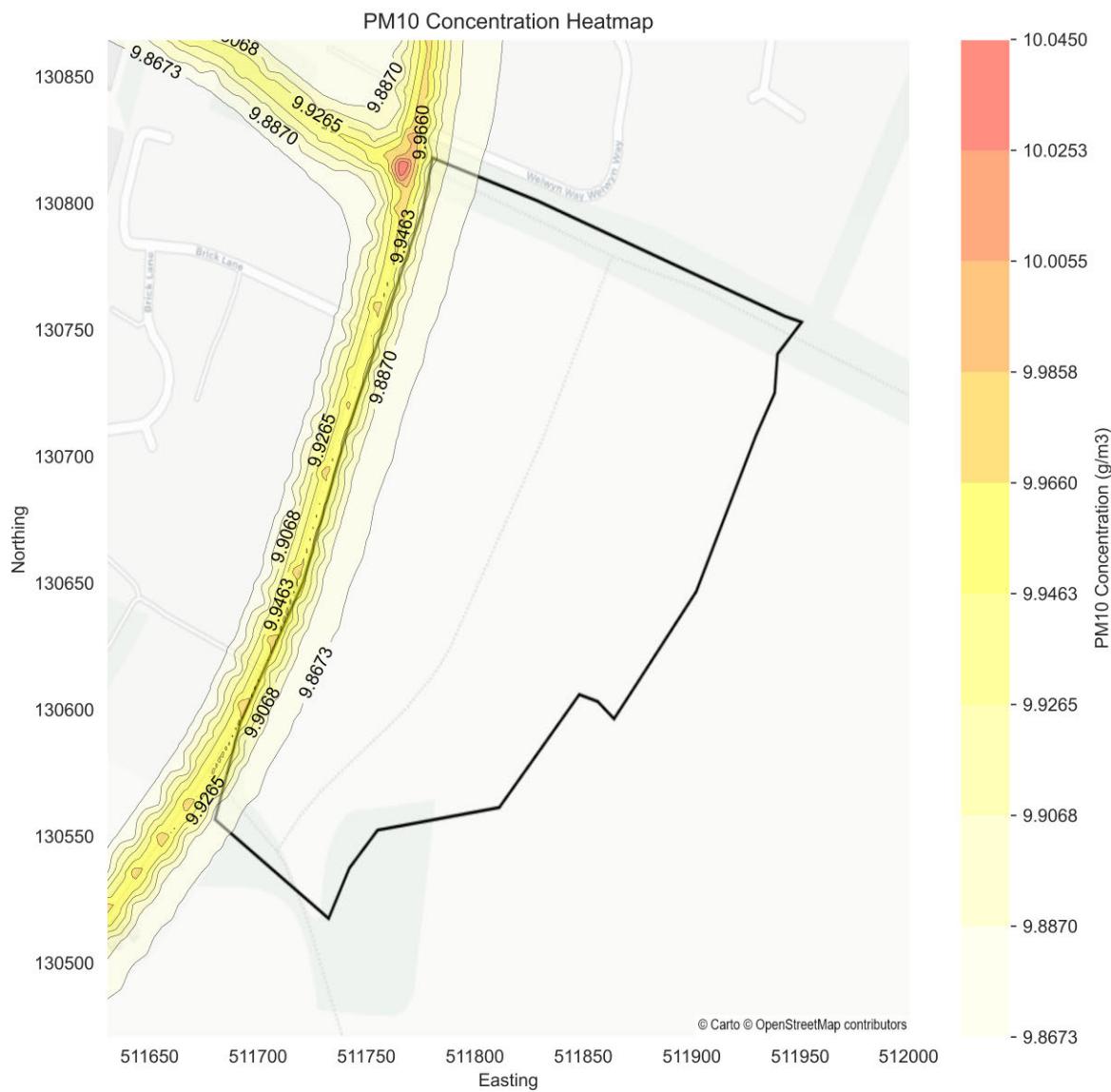





Figure 6
ADMS Roads Inputs

APPENDIX B: ASSESSMENT INPUTS

The Proposed Development has the potential to introduce future site users to poor air quality. Dispersion modelling using ADMS Roads was therefore undertaken to predict pollutant concentrations across the site to consider site suitability for the proposed end-use.

The assessment was undertaken in accordance with the guidance contained within LAQM.TG(22) and the EPUK and IAQM guidance.

Dispersion Model

Dispersion modelling was undertaken using the ADMS-Roads dispersion model (version 5.0). ADMS-Roads is developed by Cambridge Environmental Research Consultants (CERC) and is routinely used throughout the world for the prediction of pollutant dispersion from road sources. Modelling predictions from this software package are accepted within the UK by the Environment Agency and DEFRA.

The model requires input data that details the following parameters:

- Assessment area;
- Traffic flow data;
- Vehicle emission factors;
- Spatial coordinates of emissions;
- Street width;
- Meteorological data;
- Roughness length; and
- Monin-Obukhov length.

Assessment Area

Ambient concentrations were predicted over the Proposed Development site and surrounding highway network. One Cartesian grid was included in the model over the area at approximately NGR: 511820, 130664 at a height of 1.5m to represent the proposed ground floor level for the 2028 opening year scenario.

Results were subsequently used to produce contour plots. Reference should be made to Figure 6 within Appendix A for a graphical representation of the verification inputs and operation phase DS extents, respectively.

Traffic Flow Data

Development flow traffic data and associated network distribution was provided by the appointed Transport Consultants for the scheme and indicated that a total flow generation of 205 AADT is anticipated as a result of the Proposed Development.

Baseline traffic data for the road links were obtained from the Department for Transport (DfT). The DfT Matrix web tool enables the user to view and download traffic flows at count points in Great Britain from 1999 to present. The DfT matrix is referenced in LAQM.TG(22) as being a suitable source of data for air quality assessments and is therefore considered to provide a reasonable representation of traffic flows in the vicinity of the site.

Growth factors provided by the Trip End Model Presentation Program (TEMPRO) software package were utilised to allow for conversion from the obtained 2023 traffic flow to 2028 which was used to represent the opening year scenario. Vehicle speeds and road widths were obtained from the Ordnance Survey.

A summary of the traffic data used in the verification scenario is provided in Table B1.

Table B1: 2023 Verification Traffic Data

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L1	1 Buck Way	8.7	25750.0	3.3	56.5
L2	1 Cheesmer Way	9.3	25592.0	3.4	57.3
L3	1 Ellis Rd	7.6	26773.0	3.2	61.1
L4	105 Churchill Way	7.2	26331.0	3.3	61.8
L5	109 Churchill Way	7.3	26402.0	3.3	65.5
L6	11 Harding Ln	11.9	25603.0	3.4	25.9
L7	11 Langridge Ln	7.9	26441.0	3.2	51.9
L8	14 Firs Cl	9.8	45722.0	3.3	91.9
L9	14 Firs Cl	9.2	30615.0	3.1	29.7
L10	14 Firs Cl	9.0	45724.0	3.3	91.8
L11	14 Firs Cl	9.4	30648.0	3.1	14.9
L12	18 Adams Cl	8.9	25808.0	3.3	48.9
L13	18 Adams Cl	7.8	29649.0	3.2	45.3
L14	19 Churchill Way	7.5	26318.0	3.3	53.5
L15	19 Churchill Way	11.2	26798.0	3.2	66.1
L16	2 Hayes Ln	7.2	536.0	2.1	22.7
L17	2 Newbridge Cl	10.2	25492.0	3.1	43.1
L18	2 Pines Ridge	11.2	24964.0	2.6	41.0
L19	2 Robin Hood Ln	9.9	42977.0	3.5	40.3
L20	2 Robin Hood Ln	7.7	36398.0	3.3	85.5
L21	24 Shelley Dr	7.6	25603.0	3.1	31.6
L22	25 Firs Cl	10.8	30409.0	3.1	38.7
L23	25 Firs Cl	9.5	29894.0	3.1	42.7
L24	25 Firs Cl	9.4	44437.0	3.3	69.2
L25	28 Arundale Walk	8.8	32906.0	3.2	96.3
L26	28 Arundale Walk	9.2	45943.0	3.3	93.8
L27	3 Rochford Grv	8.9	29885.0	3.2	90.7
L28	3 Rochford Grv	8.0	29865.0	3.2	91.9
L29	37 Highwood Cres	7.9	37303.0	3.2	51.0
L30	4 Churchill Way	7.3	26710.0	3.2	63.4
L31	4 Churchill Way	11.0	26803.0	3.2	63.5
L32	5 Churchill Way	7.7	26841.0	3.2	64.2
L33	6 Churchill Way	9.2	26527.0	3.2	43.4

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L34	66 Longhurst Ave.	9.9	44320.0	3.3	96.0
L35	66 Longhurst Ave.	12.0	44415.0	3.3	82.9
L36	66 Longhurst Ave.	6.5	44671.0	3.3	77.5
L37	8 Langridge Ln	11.3	26322.0	3.2	43.4
L38	A24	10.4	36353.0	3.3	81.9
L39	A24	7.8	29688.0	3.2	92.4
L40	A24	10.0	30392.0	3.1	92.3
L41	A24	11.2	29740.0	3.2	93.2
L42	A24	16.7	39552.0	3.4	38.9
L43	A24	8.9	31738.0	3.4	93.3
L44	A24	9.0	38961.0	3.4	62.1
L45	A24	11.7	39727.0	3.4	15.0
L46	A24	14.3	46129.0	3.3	97.9
L47	A24	17.3	39504.0	3.4	13.2
L48	A24	8.7	44734.0	3.3	71.8
L49	A24	9.1	35962.0	3.3	81.6
L50	A24	13.8	45985.0	3.3	81.9
L51	A24	10.1	31257.0	3.2	36.7
L52	A24	10.3	29287.0	3.1	40.4
L53	A24	13.4	46045.0	3.3	96.6
L54	A24	9.7	36386.0	3.3	74.2
L55	A24	11.8	30375.0	3.1	92.8
L56	A24	9.0	35806.0	3.3	81.4
L57	A24	7.3	44585.0	3.3	68.4
L58	A24	9.5	39439.0	3.4	46.8
L59	A24	9.6	43032.0	3.5	63.1
L60	A24	8.4	36495.0	3.4	85.2
L61	A24	18.6	31477.0	3.2	111.3
L62	A24	13.5	38964.0	3.4	31.8
L63	A24	10.3	40786.0	3.5	22.1
L64	A24	16.1	39740.0	3.4	41.2
L65	A24	8.0	30739.0	3.1	92.7
L66	A24	9.8	30323.0	3.1	61.1
L67	A24	9.5	35203.0	3.3	64.9

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L68	A264	10.9	31394.0	3.2	34.9
L69	A264	10.6	31676.0	3.2	32.7
L70	A264	7.3	31465.0	3.2	41.3
L71	A264	11.1	31605.0	3.2	30.7
L72	A264	8.5	33168.0	3.2	95.3
L73	A264	11.0	31104.0	3.2	33.3
L74	A264	8.6	31427.0	3.2	95.5
L75	A264	7.3	31368.0	3.2	41.0
L76	A264	10.5	30940.0	3.2	37.2
L77	A264	9.6	31305.0	3.2	38.0
L78	A264	9.9	31073.0	3.2	38.7
L79	A264	11.4	31352.0	3.2	33.2
L80	A264	10.9	31713.0	3.2	28.7
L81	A264	10.6	31295.0	3.2	39.3
L82	A264	10.4	31315.0	3.2	61.1
L83	A264	11.0	31514.0	3.2	35.6
L84	A264	11.1	31357.0	3.2	37.0
L85	A264	11.0	31204.0	3.2	34.1
L86	A264	8.1	39942.0	3.2	63.2
L87	A264	11.4	31599.0	3.2	37.4
L88	A264	11.1	31259.0	3.2	35.2
L89	A264	20.5	31504.0	3.2	109.4
L90	A264	7.6	29496.0	3.2	59.7
L91	A281	10.2	25640.0	3.1	48.4
L92	A281	12.0	24596.0	2.6	33.8
L93	A281	11.3	25126.0	2.6	40.0
L94	A281	11.3	24420.0	2.6	38.1
L95	A281	11.3	24265.0	2.6	37.7
L96	A281	10.7	24146.0	2.6	33.7
L97	A281	11.2	25214.0	2.6	35.9
L98	Albion Way	14.7	24825.0	3.1	17.3
L99	Albion Way	15.9	12412.0	3.1	13.9
L100	Albion Way	7.3	24825.0	3.1	38.5
L101	Albion Way	7.8	24825.0	3.1	41.5

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L102	Albion Way	8.8	24825.0	3.1	32.9
L103	Albion Way	13.2	24825.0	3.1	39.1
L104	Albion Way	10.0	24825.0	3.1	26.0
L105	Albion Way	9.7	24825.0	3.1	25.7
L106	Albion Way	11.3	24825.0	3.1	30.0
L107	Albion Way	8.1	24825.0	3.1	22.2
L108	Albion Way	7.8	24825.0	3.1	33.4
L109	Albion Way	8.7	24825.0	3.1	41.8
L110	Albion Way	10.5	24825.0	3.1	22.0
L111	Albion Way	14.5	12412.0	3.1	30.0
L112	Albion Way	7.8	24825.0	3.1	33.0
L113	Albion Way	10.0	24825.0	3.1	34.4
L114	Albion Way	8.8	24825.0	3.1	38.5
L115	Albion Way	10.9	24825.0	3.1	33.6
L116	Albion Way	15.2	24825.0	3.1	27.0
L117	Albion Way	9.6	24825.0	3.1	13.0
L118	Albion Way	7.5	24825.0	3.1	28.4
L119	Albion Way	10.3	24825.0	3.1	30.4
L120	Albion Way	8.9	24825.0	3.1	24.4
L121	Albion Way	7.5	24825.0	3.1	35.6
L122	Albion Way	12.3	24825.0	3.1	25.2
L123	Albion Way	15.1	24825.0	3.1	23.6
L124	Albion Way	10.6	24825.0	3.1	34.4
L125	Albion Way	8.5	24825.0	3.1	14.2
L126	Albion Way	7.2	24825.0	3.1	60.6
L127	Albion Way	9.4	24825.0	3.1	30.0
L128	Albion Way	11.6	24825.0	3.1	35.6
L129	Albion Way	10.2	24825.0	3.1	32.7
L130	Albion Way	18.8	24825.0	3.1	36.4
L131	Albion Way	11.3	24825.0	3.1	32.8
L132	Albion Way	10.0	24825.0	3.1	5.7
L133	Albion Way	10.5	24825.0	3.1	26.4
L134	Albion Way	10.4	24825.0	3.1	24.9
L135	Albion Way	19.7	24825.0	3.1	34.3

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L136	Albion Way	10.0	24825.0	3.1	53.7
L137	Albion Way	10.9	24825.0	3.1	28.1
L138	Albion Way	11.0	24825.0	3.1	33.5
L139	Albion Way	9.3	24825.0	3.1	25.8
L140	Albion Way	9.2	24825.0	3.1	27.8
L141	Albion Way	8.5	24825.0	3.1	36.8
L142	Albion Way	10.8	24825.0	3.1	36.0
L143	Albion Way	22.3	24825.0	3.1	42.0
L144	Albion Way	8.9	24825.0	3.1	26.7
L145	Albion Way	7.7	24825.0	3.1	41.3
L146	Albion Way	22.5	24825.0	3.1	18.7
L147	Albion Way	9.8	24825.0	3.1	28.0
L148	Albion Way	7.3	24825.0	3.1	25.0
L149	Albion Way	7.2	24825.0	3.1	35.0
L150	Albion Way	10.7	24825.0	3.1	27.5
L151	Albion Way	10.5	24825.0	3.1	42.4
L152	Albion Way	10.0	24825.0	3.1	25.0
L153	Algiers Rd	8.3	30060.0	3.3	79.2
L154	B2237	14.0	40281.0	3.4	38.6
L155	Bashurst Hill	6.5	3316.0	1.6	57.3
L156	Bishopric	10.5	25221.0	2.3	37.0
L157	Bishopric	11.8	25035.0	2.2	27.2
L158	Bishopric	24.0	24831.0	2.1	34.0
L159	Bishopric	11.0	24970.0	2.2	16.6
L160	Bishopric	11.5	24927.0	2.1	18.2
L161	Bishopric	11.3	25221.0	2.3	32.5
L162	Bishopric	11.4	25220.0	2.3	40.3
L163	Bishopric	9.4	25157.0	2.3	33.0
L164	Bishopric	12.3	24862.0	2.1	24.3
L165	Bishopric	19.2	25139.0	2.2	35.9
L166	Bishopric	10.9	25131.0	2.2	30.6
L167	Bishopric	13.8	25195.0	2.3	32.7
L168	Bishopric	11.3	24862.0	2.1	8.3
L169	Bishopric	11.2	24997.0	2.2	21.3

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L170	Blackbridge Lane	7.9	3180.0	1.4	31.9
L171	Blackbridge Lane	6.8	3178.0	1.4	34.4
L172	Blackbridge Lane	7.7	3190.0	1.4	41.5
L173	Blackbridge Lane	9.2	3191.0	1.4	25.1
L174	Blackbridge Lane	6.9	3182.0	1.4	35.7
L175	Blackbridge Lane	8.2	3181.0	1.4	40.5
L176	Blackbridge Lane	6.5	3182.0	1.4	42.3
L177	Blackbridge Lane	7.2	3178.0	1.4	31.6
L178	Blackbridge Lane	9.1	3183.0	1.4	40.5
L179	Blackbridge Lane	8.6	3186.0	1.4	44.3
L180	Blackbridge Lane	6.8	3182.0	1.4	38.4
L181	Blackbridge Lane	8.2	3182.0	1.4	44.4
L182	Blackbridge Lane	8.6	3179.0	1.4	17.9
L183	Blackbridge Lane	9.9	3183.0	1.4	44.2
L184	Blackbridge Lane	8.9	3182.0	1.4	41.2
L185	Blackbridge Lane	10.5	485.0	2.0	26.9
L186	Blackbridge Lane	7.8	3179.0	1.4	31.6
L187	Blackbridge Lane	7.9	3182.0	1.4	37.6
L188	Blackbridge Lane	8.4	3183.0	1.4	45.0
L189	Blackbridge Lane	7.7	3179.0	1.4	34.8
L190	Blackbridge Lane	7.7	3180.0	1.4	40.0
L191	Blackbridge Lane	6.9	3182.0	1.4	39.2
L192	Blackbridge Lane	6.9	3182.0	1.4	43.9
L193	Blackbridge Lane	6.8	3182.0	1.4	41.0
L194	Blackbridge Lane	7.7	3181.0	1.4	43.7
L195	Blackbridge Lane	7.3	3182.0	1.4	41.8
L196	Blackbridge Lane	16.5	488.0	2.0	26.0
L197	Blackbridge Lane	9.5	3183.0	1.4	41.0
L198	Blackbridge Lane	6.6	3180.0	1.4	29.8
L199	Brighton Road	5.5	11408.0	1.5	44.7
L200	Brighton Road	10.3	18702.0	1.9	38.3
L201	Brighton Road	9.2	12623.0	1.6	41.3
L202	Brighton Road	10.7	11694.0	1.5	45.2
L203	Brighton Road	9.4	13459.0	1.6	39.6

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L204	Brighton Road	9.3	16935.0	1.9	37.5
L205	Brighton Road	10.0	15364.0	1.8	39.9
L206	Brighton Road	8.3	11966.0	1.5	43.2
L207	Brighton Road	10.0	19668.0	2.0	33.0
L208	Brighton Road	9.4	17373.0	1.9	34.7
L209	Brighton Road	9.2	11409.0	1.5	46.8
L210	Brighton Road	9.0	11956.0	1.5	44.3
L211	Brighton Road	9.8	19390.0	2.0	35.4
L212	Brighton Road	9.2	11683.0	1.5	42.2
L213	Brighton Road	9.0	16588.0	1.9	38.3
L214	Brighton Road	5.9	11411.0	1.5	50.7
L215	Brighton Road	9.7	18227.0	1.9	37.0
L216	Broadbridge Heath Bypass	11.2	25434.0	3.1	26.9
L217	Broadbridge Heath Bypass	8.8	25081.0	3.1	35.4
L218	Broadbridge Heath Bypass	11.1	19715.0	3.0	34.2
L219	Broadbridge Heath Bypass	12.0	25407.0	3.1	35.8
L220	Broadbridge Heath Bypass	9.6	19897.0	3.0	60.8
L221	Broadbridge Heath Bypass	10.4	19434.0	3.0	36.6
L222	Broadbridge Heath Road	8.8	3144.0	1.5	46.1
L223	Broadbridge Heath Road	5.5	3081.0	1.5	65.3
L224	Broadbridge Way	8.6	3162.0	1.5	11.3
L225	Broadbridge Way	10.7	3173.0	1.5	40.7
L226	Broadbridge Way	8.0	3173.0	1.5	30.3
L227	Broadbridge Way	9.4	3166.0	1.5	71.2
L228	Broadbridge Way	8.8	3173.0	1.5	28.7
L229	Broadbridge Way	11.0	3175.0	1.5	41.1
L230	Broadbridge Way	12.6	3172.0	1.5	31.0
L231	Broadbridge Way	11.7	3174.0	1.5	27.1
L232	Broadbridge Way	11.3	3175.0	1.5	30.5
L233	Broadbridge Way	10.7	3178.0	1.5	9.9
L234	Broadbridge Way	9.7	3173.0	1.5	27.1
L235	Broadbridge Way	5.8	3166.0	1.5	40.1
L236	Broadbridge Way	9.9	3173.0	1.5	39.7
L237	Broadbridge Way	9.0	3171.0	1.5	42.3

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L238	Broadbridge Way	6.6	3172.0	1.5	40.6
L239	Broadbridge Way	15.0	3173.0	1.5	30.1
L240	Broadbridge Way	12.3	3171.0	1.5	57.2
L241	Broadbridge Way	10.8	3168.0	1.5	60.0
L242	Broadbridge Way	8.6	3163.0	1.5	36.7
L243	Broadbridge Way	6.1	3172.0	1.5	42.7
L244	Broadbridge Way	8.0	3164.0	1.5	46.8
L245	Broadbridge Way	9.5	3173.0	1.5	34.2
L246	Broadbridge Way	9.0	3173.0	1.5	29.2
L247	Broadbridge Way	11.0	3173.0	1.5	34.3
L248	C622	9.9	30501.0	3.1	34.9
L249	C622	9.7	30691.0	3.1	15.6
L250	East Street	9.4	21947.0	1.9	32.1
L251	East Street	12.7	22689.0	1.9	43.8
L252	East Street	13.6	22510.0	1.9	24.5
L253	East Street	12.0	22632.0	1.9	15.3
L254	East Street	9.7	22600.0	1.9	25.3
L255	East Street	11.2	22364.0	1.9	27.1
L256	East Street	8.5	22106.0	1.9	31.3
L257	Farthings Hill	13.4	25250.0	2.6	31.1
L258	Farthings Hill	13.7	25321.0	2.6	33.3
L259	Farthings Hill	9.6	29189.0	3.0	37.8
L260	Farthings Hill	8.0	29363.0	3.0	22.6
L261	Farthings Hill	10.7	27691.0	2.9	46.4
L262	Farthings Hill	7.7	26268.0	2.7	40.3
L263	Farthings Hill	7.1	27738.0	2.9	43.2
L264	Farthings Hill	7.7	28799.0	3.0	40.8
L265	Farthings Hill	6.2	27002.0	2.9	43.7
L266	Farthings Hill	7.2	27496.0	2.9	44.4
L267	Farthings Hill	7.8	28921.0	3.0	35.1
L268	Farthings Hill Interchange	10.2	30133.0	3.1	39.2
L269	Farthings Hill Interchange	12.1	30017.0	3.1	44.7
L270	Farthings Hill Interchange	11.3	30744.0	3.1	26.7
L271	Farthings Hill Interchange	11.2	30275.0	3.1	38.6

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L272	Farthings Hill Interchange	8.7	29444.0	3.1	40.1
L273	Farthings Hill Interchange	11.6	30576.0	3.1	76.7
L274	Farthings Hill Interchange	8.9	29361.0	3.1	41.8
L275	Farthings Hill Interchange	8.0	35700.0	3.2	29.9
L276	Farthings Hill Interchange	8.5	30835.0	3.1	93.0
L277	Farthings Walk	9.6	29352.0	3.1	37.6
L278	Farthings Walk	10.1	29594.0	3.1	43.1
L279	Five Oaks Road	10.1	26160.0	3.2	34.6
L280	Five Oaks Road	9.7	26137.0	3.2	36.8
L281	Five Oaks Road	6.7	26008.0	3.1	55.4
L282	Five Oaks Road	10.1	26124.0	3.2	35.6
L283	Five Oaks Road	6.2	26856.0	3.1	58.6
L284	Five Oaks Road	12.4	26099.0	3.2	49.5
L285	Five Oaks Road	7.0	26708.0	3.1	62.0
L286	Five Oaks Road	11.1	26199.0	3.2	44.5
L287	Five Oaks Road	9.8	26198.0	3.2	44.0
L288	Five Oaks Road	10.0	26232.0	3.2	32.4
L289	Five Oaks Road	6.6	26791.0	3.1	60.0
L290	Five Oaks Road	8.2	26871.0	3.3	57.5
L291	Five Oaks Road	7.0	25943.0	3.1	57.5
L292	Five Oaks Road	9.1	26066.0	3.2	36.1
L293	Five Oaks Road	6.7	26361.0	3.1	62.7
L294	Five Oaks Road	10.1	26272.0	3.1	57.6
L295	Five Oaks Road	11.9	26262.0	3.1	64.3
L296	Five Oaks Road	10.1	26094.0	3.2	25.7
L297	Five Oaks Road	8.1	25989.0	3.1	56.8
L298	Five Oaks Road	7.7	26859.0	3.1	56.0
L299	Gatefield Cottages	7.2	538.0	2.1	22.7
L300	Guildford Road	9.7	19192.0	3.0	35.3
L301	Guildford Road	15.0	23466.0	2.5	31.4
L302	Guildford Road	16.7	23740.0	2.5	32.5
L303	Guildford Road	12.8	18535.0	3.0	31.4
L304	Guildford Road	8.6	19784.0	2.2	42.5
L305	Guildford Road	7.9	20060.0	3.1	52.8

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L306	Guildford Road	7.7	22191.0	2.4	36.6
L307	Guildford Road	8.2	22329.0	2.4	43.5
L308	Guildford Road	12.2	25142.0	2.4	29.4
L309	Guildford Road	13.1	18532.0	3.0	42.8
L310	Guildford Road	13.4	25175.0	2.3	32.9
L311	Guildford Road	8.5	24563.0	2.5	37.5
L312	Guildford Road	10.7	19703.0	3.0	42.7
L313	Guildford Road	7.2	21060.0	2.3	40.2
L314	Guildford Road	10.8	16927.0	1.9	38.1
L315	Guildford Road	10.5	25051.0	2.4	33.0
L316	Guildford Road	8.3	14882.0	1.6	40.6
L317	Guildford Road	7.7	16558.0	2.9	49.0
L318	Guildford Road	10.0	19229.0	3.0	39.1
L319	Guildford Road	10.3	19542.0	3.0	45.4
L320	Guildford Road	8.4	18982.0	2.1	42.2
L321	Guildford Road	10.6	19267.0	3.0	35.6
L322	Guildford Road	8.8	23857.0	2.3	38.0
L323	Guildford Road	7.9	23131.0	2.4	41.4
L324	Guildford Road	11.2	15649.0	1.7	42.8
L325	Guildford Road	10.0	19423.0	3.0	52.4
L326	Guildford Road	10.2	23370.0	2.5	39.5
L327	Hayes Lane	7.7	548.0	2.2	33.9
L328	Heath Retail Park	8.1	37317.0	3.2	74.6
L329	Highwood allotment	10.9	31015.0	3.2	47.6
L330	Highwood allotment	7.8	31400.0	3.2	94.3
L331	Hills Farm Lane	6.8	3171.0	1.3	54.9
L332	Hills Farm Lane	7.8	3176.0	1.4	52.1
L333	Hills Farm Lane	9.9	3173.0	1.4	19.4
L334	Hills Farm Lane	6.6	3176.0	1.4	57.3
L335	Hills Farm Lane	6.7	3172.0	1.4	55.0
L336	Hills Farm Lane	7.1	3170.0	1.3	53.5
L337	Hills Farm Lane	6.9	3176.0	1.4	59.0
L338	Hills Farm Lane	7.3	3171.0	1.3	54.7
L339	Hills Farm Lane	7.7	3177.0	1.4	45.1

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L340	Hills Farm Lane	8.6	3176.0	1.4	45.3
L341	Hills Farm Lane	7.5	3173.0	1.4	49.9
L342	Hills Farm Lane	7.8	3172.0	1.4	47.3
L343	Hills Farm Lane	8.3	3176.0	1.4	54.9
L344	Hills Farm Lane	7.6	3174.0	1.4	53.4
L345	Hills Farm Lane	8.7	3177.0	1.4	48.9
L346	Hills Farm Lane	9.3	3176.0	1.4	48.5
L347	Hills Farm Lane	6.9	3177.0	1.4	50.9
L348	Hills Farm Lane	7.1	3175.0	1.4	54.2
L349	Hills Farm Lane	7.2	3170.0	1.3	53.6
L350	Hills Farm Lane	7.9	3171.0	1.3	48.7
L351	Hills Farm Lane	6.6	3177.0	1.4	50.2
L352	Hills Farm Lane	7.5	3176.0	1.4	55.0
L353	Hills Farm Lane	7.8	3171.0	1.3	55.4
L354	Hills Farm Lane	8.4	3173.0	1.4	36.1
L355	Hills Farm Lane	8.5	3177.0	1.4	30.0
L356	Hills Farm Lane	7.4	3176.0	1.4	53.4
L357	Hills Farm Lane	7.7	3173.0	1.4	50.2
L358	Hills Farm Lane	6.7	3176.0	1.4	59.3
L359	London Road	7.3	6279.0	3.1	35.8
L360	London Road	8.6	6271.0	3.1	31.1
L361	London Road	7.0	6273.0	3.1	34.6
L362	London Road	7.3	6268.0	3.1	14.8
L363	London Road	13.0	6288.0	3.1	24.5
L364	London Road	11.8	6288.0	3.1	43.1
L365	London Road	7.8	6267.0	3.1	36.6
L366	Lyons Road	7.7	3214.0	1.6	41.9
L367	Lyons Road	7.8	3176.0	1.6	33.8
L368	Lyons Road	9.7	3201.0	1.5	31.4
L369	Lyons Road	9.7	3201.0	1.5	16.3
L370	Newbridge Roundabout	9.6	25758.0	3.1	38.6
L371	Newbridge Roundabout	10.8	25525.0	3.1	33.1
L372	Newbridge Roundabout	10.0	25719.0	3.1	37.9
L373	Newton House	25.9	541.0	2.1	22.4

Road Link	Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L374	10.9	6361.0	3.1	23.9
L375	9.1	6396.0	3.1	37.1
L376	10.3	6399.0	3.1	40.8
L377	10.9	6290.0	3.1	43.1
L378	8.4	6359.0	3.1	31.7
L379	7.7	6390.0	3.1	41.8
L380	9.0	6305.0	3.1	47.3
L381	5.2	6326.0	3.1	55.3
L382	8.8	6359.0	3.1	18.2
L383	9.9	6382.0	3.1	39.9
L384	8.4	6377.0	3.1	31.5
L385	9.9	6373.0	3.1	25.4
L386	8.2	6403.0	3.1	36.1
L387	8.5	6337.0	3.1	44.7
L388	7.9	6325.0	3.1	57.2
L389	8.9	6328.0	3.1	42.4
L390	12.9	6300.0	3.1	51.0
L391	9.5	6380.0	3.1	37.4
L392	9.3	6331.0	3.1	36.8
L393	11.6	6351.0	3.1	31.0
L394	8.5	6301.0	3.1	46.1
L395	9.6	6313.0	3.1	48.2
L396	8.5	6296.0	3.1	41.0
L397	5.6	6326.0	3.1	51.8
L398	14.0	6367.0	3.1	23.9
L399	11.3	6364.0	3.1	27.3
L400	8.4	6393.0	3.1	41.6
L401	9.1	6345.0	3.1	45.7
L402	10.8	6349.0	3.1	45.9
L403	9.8	6347.0	3.1	43.0
L404	12.1	6308.0	3.1	49.9
L405	9.2	6344.0	3.1	49.1
L406	16.9	6370.0	3.1	32.2
L407	14.6	6357.0	3.1	44.7

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L408	North Parade	8.4	6385.0	3.1	40.6
L409	Old Guildford Rd	9.1	29755.0	3.1	42.7
L410	Old Guildford Road	6.3	3150.0	1.5	38.6
L411	Old Guildford Road	7.2	3152.0	1.5	35.2
L412	Old Guildford Road	8.0	3145.0	1.5	24.6
L413	Old Guildford Road	7.7	3159.0	1.5	32.4
L414	Old Guildford Road	6.0	3153.0	1.5	35.5
L415	Old Guildford Road	9.0	3154.0	1.5	40.0
L416	Old Guildford Road	6.7	3156.0	1.5	36.1
L417	Old Guildford Road	10.4	3159.0	1.5	17.6
L418	Old Guildford Road	11.1	3143.0	1.5	24.6
L419	Old Guildford Road	8.6	3154.0	1.5	32.6
L420	Old Guildford Road	10.0	3160.0	1.5	28.6
L421	Old Guildford Road	6.1	3152.0	1.5	33.8
L422	Old Guildford Road	8.3	3153.0	1.5	40.5
L423	Old Guildford Road	7.2	3149.0	1.5	28.1
L424	Old Guildford Road	6.4	3147.0	1.5	25.2
L425	Old Guildford Road	6.8	3154.0	1.5	35.8
L426	Old Guildford Road	7.7	3155.0	1.5	46.8
L427	Old Guildford Road	11.4	3154.0	1.5	30.6
L428	Old Guildford Road	10.8	3140.0	1.5	27.3
L429	Old Guildford Road	9.0	3144.0	1.5	24.6
L430	Old Guildford Road	7.3	3151.0	1.5	35.4
L431	Old Guildford Road	6.7	3143.0	1.5	24.6
L432	Old Guildford Road	6.6	3152.0	1.5	35.2
L433	Old Guildford Road	11.1	3140.0	1.5	20.4
L434	Old Guildford Road	7.9	3141.0	1.5	25.2
L435	Old Guildford Road	8.4	3153.0	1.5	36.9
L436	Old Guildford Road	7.8	3153.0	1.5	36.8
L437	Old Guildford Road	12.3	3153.0	1.5	26.8
L438	Old Guildford Road	13.8	3153.0	1.5	38.2
L439	Old Guildford Road	10.2	3142.0	1.5	24.6
L440	Park Street	7.1	3144.0	1.6	39.1
L441	Park Way	13.6	12412.0	1.8	26.5

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L442	Park Way	13.0	12412.0	1.7	30.0
L443	Park Way	13.5	22862.0	1.8	30.0
L444	Park Way	7.9	12412.0	1.7	30.0
L445	Park Way	11.5	12412.0	1.7	30.0
L446	Park Way	19.1	22837.0	1.8	30.0
L447	Park Way	10.1	12412.0	1.7	30.0
L448	Park Way	17.8	22841.0	1.8	30.0
L449	Park Way	13.4	12412.0	1.8	29.6
L450	Park Way	8.3	12412.0	1.7	30.0
L451	Park Way	8.3	12412.0	1.8	30.0
L452	Park Way	12.6	12412.0	1.8	14.4
L453	Queen Street	8.4	20291.0	2.0	34.8
L454	Queen Street	9.0	19989.0	2.0	34.9
L455	Queen Street	5.6	20087.0	2.0	43.0
L456	Queen Street	8.2	21561.0	1.9	30.2
L457	Queen Street	5.4	20087.0	2.0	33.4
L458	Queen Street	8.0	20670.0	1.9	32.5
L459	Queen Street	8.9	21271.0	1.9	28.8
L460	Robin Hood Ln	13.3	40683.0	3.5	32.2
L461	Robin Hood Roundabout	13.0	39951.0	3.4	35.7
L462	Robin Hood Roundabout	15.6	40415.0	3.4	49.4
L463	Robin Hood Roundabout	13.7	40768.0	3.5	39.9
L464	South Pilfolds	7.6	31768.0	3.4	96.4
L465	Spring Lane	4.2	538.0	2.1	26.9
L466	Spring Lane	4.3	537.0	2.1	22.7
L467	Spring Lane	3.9	538.0	2.1	23.8
L468	Spring Lane	4.5	538.0	2.1	24.4
L469	Spring Lane	7.2	540.0	2.1	22.7
L470	Spring Lane	2.9	539.0	2.1	26.8
L471	Spring Lane	6.8	539.0	2.1	25.1
L472	Springfield Road	12.0	6289.0	3.1	43.8
L473	Springfield Road	12.7	6269.0	3.1	28.4
L474	Springfield Road	22.6	6268.0	3.1	38.0
L475	Springfield Road	9.7	6273.0	3.1	31.2

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L476	Springfield Road	9.3	6284.0	3.1	40.3
L477	Springfield Road	10.8	6271.0	3.1	23.9
L478	Springfield Road	12.6	6269.0	3.1	14.1
L479	Springfield Road	9.2	6280.0	3.1	40.2
L480	Stane Street	15.6	13615.0	3.4	70.4
L481	The Street	6.7	3153.0	1.6	38.5
L482	The Street	7.1	3162.0	1.6	30.6
L483	The Street	7.4	3165.0	1.6	31.6
L484	The Street	7.1	3158.0	1.6	38.6
L485	The Street	6.7	3157.0	1.6	37.2
L486	The Street	6.7	3174.0	1.6	34.2
L487	The Street	6.3	3153.0	1.6	41.4
L488	The Street	7.5	3159.0	1.6	33.7
L489	The Street	7.1	3161.0	1.6	33.2
L490	The Street	7.4	3170.0	1.6	35.9
L491	The Street	6.6	3162.0	1.6	27.2
L492	The Street	6.5	3153.0	1.6	39.7
L493	Tower Hill	6.2	3131.0	1.2	42.0
L494	Tower Hill	10.5	3172.0	1.3	37.5
L495	Tower Hill	7.5	3138.0	1.2	37.5
L496	Tower Hill	5.2	3146.0	1.3	37.1
L497	Tower Hill	5.8	3114.0	1.2	48.0
L498	Tower Hill	6.7	3143.0	1.3	34.0
L499	Tower Hill	5.5	3154.0	1.3	31.7
L500	Tower Hill	5.9	3075.0	1.1	46.8
L501	Warnham Road	9.1	6441.0	3.1	44.9
L502	Warnham Road	10.3	6429.0	3.1	43.5
L503	Warnham Road	9.9	6462.0	3.1	39.5
L504	Warnham Road	9.8	6408.0	3.1	35.9
L505	Warnham Road	7.8	6422.0	3.1	39.9
L506	Warnham Road	9.2	6451.0	3.1	43.4
L507	Warnham Road	8.4	6458.0	3.1	37.4
L508	Warnham Road	10.9	6461.0	3.1	9.1
L509	Warnham Road	6.5	3152.0	1.5	26.1

Road Link		Road Width (m)	24 Hour AADT Flow	HDV Pop (%)	Mean Vehicle Speed (km/hr)
L510	Warnham Road	8.6	6446.0	3.1	45.9
L511	Warnham Road	9.2	6444.0	3.1	46.6
L512	Warnham Road	8.3	6446.0	3.1	54.1
L513	Warnham Road	8.1	6456.0	3.1	41.2
L514	Wildwood	11.1	24125.0	2.6	44.4
L515	Worthing Road	9.8	6229.0	3.1	36.2
L516	Worthing Road	9.4	6118.0	3.1	48.8
L517	Worthing Road	6.8	6093.0	3.1	54.3
L518	Worthing Road	9.8	6229.0	3.1	30.8
L519	Worthing Road	9.8	6231.0	3.1	40.3
L520	Worthing Road	9.9	6223.0	3.1	30.8
L521	Worthing Road	10.8	6227.0	3.1	31.9
L522	Worthing Road	7.4	6154.0	3.1	30.0
L523	Worthing Road	9.5	6230.0	3.1	24.9
L524	Worthing Road	6.9	6125.0	3.1	58.3
L525	Worthing Road	10.1	6228.0	3.1	32.2
L526	Worthing Road	10.8	20000.0	3.1	5.0
L527	Worthing Road	10.8	6219.0	3.1	33.6
L528	Worthing Road	9.7	6230.0	3.1	31.7
L529	Worthing Road	11.9	6225.0	3.1	22.8
L530	Worthing Road	10.6	6227.0	3.1	32.8
L531	Worthing Road	10.3	6227.0	3.1	29.3
L532	Worthing Road	12.1	6225.0	3.1	25.6
L533	Worthing Road	8.9	20000.0	3.1	5.0

Reference should be made to Figure 6 within Appendix A for a graphical representation of the road link locations used within the verification assessment. The road width and mean vehicle speed shown in Table B1 remained the same for the 2028 scenarios.

A summary of the 2028 traffic data is shown in Table B2.

Table B2: 2028 Traffic Data

Road Link	DS Scenario		
	24 Hr AADT Flow	HDV Prop (%)	
L1	1 Buck Way	26947.0	3.3
L2	1 Cheesmer Way	26783.0	3.3
L3	1 Ellis Rd	28009.0	3.2

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L4	105 Churchill Way	27550.0	3.3
L5	109 Churchill Way	27624.0	3.3
L6	11 Harding Ln	26794.0	3.3
L7	11 Langridge Ln	27664.0	3.2
L8	14 Firs Cl	47687.0	3.3
L9	14 Firs Cl	31999.0	3.1
L10	14 Firs Cl	47690.0	3.3
L11	14 Firs Cl	32033.0	3.1
L12	18 Adams Cl	27007.0	3.3
L13	18 Adams Cl	30996.0	3.2
L14	19 Churchill Way	27536.0	3.3
L15	19 Churchill Way	28035.0	3.2
L16	2 Hayes Ln	762.0	1.6
L17	2 Newbridge Cl	26678.0	3.1
L18	2 Pines Ridge	26130.0	2.6
L19	2 Robin Hood Ln	44836.0	3.5
L20	2 Robin Hood Ln	38005.0	3.3
L21	24 Shelley Dr	26793.0	3.1
L22	25 Firs Cl	31784.0	3.1
L23	25 Firs Cl	31250.0	3.0
L24	25 Firs Cl	46353.0	3.3
L25	28 Arundale Walk	34378.0	3.2
L26	28 Arundale Walk	47916.0	3.3
L27	3 Rochford Grv	31240.0	3.2
L28	3 Rochford Grv	31220.0	3.2
L29	37 Highwood Cres	38944.0	3.2
L30	4 Churchill Way	27943.0	3.2
L31	4 Churchill Way	28040.0	3.2
L32	5 Churchill Way	28080.0	3.2
L33	6 Churchill Way	27753.0	3.2
L34	66 Longhurst Ave.	46232.0	3.3
L35	66 Longhurst Ave.	46329.0	3.3
L36	66 Longhurst Ave.	46596.0	3.3
L37	8 Langridge Ln	27540.0	3.1
L38	A24	37957.0	3.2

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L39	A24	31036.0	3.2
L40	A24	31768.0	3.1
L41	A24	31090.0	3.2
L42	A24	41280.0	3.4
L43	A24	33165.0	3.4
L44	A24	40666.0	3.4
L45	A24	41461.0	3.4
L46	A24	48110.0	3.3
L47	A24	41230.0	3.4
L48	A24	46662.0	3.3
L49	A24	37551.0	3.3
L50	A24	47961.0	3.3
L51	A24	32665.0	3.2
L52	A24	30619.0	3.0
L53	A24	48023.0	3.3
L54	A24	37992.0	3.3
L55	A24	31749.0	3.1
L56	A24	37390.0	3.3
L57	A24	46506.0	3.3
L58	A24	41162.0	3.4
L59	A24	44894.0	3.5
L60	A24	38105.0	3.4
L61	A24	32893.0	3.2
L62	A24	40670.0	3.4
L63	A24	42561.0	3.4
L64	A24	41475.0	3.4
L65	A24	32128.0	3.1
L66	A24	31695.0	3.1
L67	A24	36763.0	3.3
L68	A264	32807.0	3.1
L69	A264	33100.0	3.1
L70	A264	32881.0	3.2
L71	A264	33026.0	3.1
L72	A264	34650.0	3.2
L73	A264	32506.0	3.2

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L74	A264	32842.0	3.2
L75	A264	32781.0	3.1
L76	A264	32336.0	3.2
L77	A264	32716.0	3.2
L78	A264	32474.0	3.2
L79	A264	32764.0	3.1
L80	A264	33139.0	3.1
L81	A264	32705.0	3.2
L82	A264	32726.0	3.2
L83	A264	32932.0	3.1
L84	A264	32769.0	3.1
L85	A264	32611.0	3.2
L86	A264	41685.0	3.2
L87	A264	33021.0	3.1
L88	A264	32667.0	3.2
L89	A264	32922.0	3.1
L90	A264	30837.0	3.2
L91	A281	26832.0	3.1
L92	A281	25747.0	2.6
L93	A281	26299.0	2.6
L94	A281	25565.0	2.6
L95	A281	25404.0	2.5
L96	A281	25281.0	2.5
L97	A281	26389.0	2.6
L98	Albion Way	25986.0	3.0
L99	Albion Way	12993.0	3.0
L100	Albion Way	25986.0	3.0
L101	Albion Way	25986.0	3.0
L102	Albion Way	25986.0	3.0
L103	Albion Way	25986.0	3.0
L104	Albion Way	25986.0	3.0
L105	Albion Way	25986.0	3.0
L106	Albion Way	25986.0	3.0
L107	Albion Way	25986.0	3.0
L108	Albion Way	25986.0	3.0

Road Link	DS Scenario		
	24 Hr AADT Flow	HDV Prop (%)	
L109	Albion Way	25986.0	3.0
L110	Albion Way	25986.0	3.0
L111	Albion Way	12993.0	3.0
L112	Albion Way	25986.0	3.0
L113	Albion Way	25986.0	3.0
L114	Albion Way	25986.0	3.0
L115	Albion Way	25986.0	3.0
L116	Albion Way	25986.0	3.0
L117	Albion Way	25986.0	3.0
L118	Albion Way	25986.0	3.0
L119	Albion Way	25986.0	3.0
L120	Albion Way	25986.0	3.0
L121	Albion Way	25986.0	3.0
L122	Albion Way	25986.0	3.0
L123	Albion Way	25986.0	3.0
L124	Albion Way	25986.0	3.0
L125	Albion Way	25986.0	3.0
L126	Albion Way	25986.0	3.0
L127	Albion Way	25986.0	3.0
L128	Albion Way	25986.0	3.0
L129	Albion Way	25986.0	3.0
L130	Albion Way	25986.0	3.0
L131	Albion Way	25986.0	3.0
L132	Albion Way	25986.0	3.0
L133	Albion Way	25986.0	3.0
L134	Albion Way	25986.0	3.0
L135	Albion Way	25986.0	3.0
L136	Albion Way	25986.0	3.0
L137	Albion Way	25986.0	3.0
L138	Albion Way	25986.0	3.0
L139	Albion Way	25986.0	3.0
L140	Albion Way	25986.0	3.0
L141	Albion Way	25986.0	3.0
L142	Albion Way	25986.0	3.0
L143	Albion Way	25986.0	3.0

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L144	Albion Way	25986.0	3.0
L145	Albion Way	25986.0	3.0
L146	Albion Way	25986.0	3.0
L147	Albion Way	25986.0	3.0
L148	Albion Way	25986.0	3.0
L149	Albion Way	25986.0	3.0
L150	Albion Way	25986.0	3.0
L151	Albion Way	25986.0	3.0
L152	Albion Way	25986.0	3.0
L153	Algiers Rd	31422.0	3.2
L154	B2237	42037.0	3.4
L155	Bashurst Hill	3648.0	1.5
L156	Bishopric	26397.0	2.3
L157	Bishopric	26203.0	2.2
L158	Bishopric	25992.0	2.1
L159	Bishopric	26137.0	2.1
L160	Bishopric	26092.0	2.1
L161	Bishopric	26397.0	2.3
L162	Bishopric	26396.0	2.3
L163	Bishopric	26331.0	2.2
L164	Bishopric	26024.0	2.1
L165	Bishopric	26312.0	2.2
L166	Bishopric	26304.0	2.2
L167	Bishopric	26370.0	2.3
L168	Bishopric	26024.0	2.1
L169	Bishopric	26165.0	2.2
L170	Blackbridge Lane	3507.0	1.3
L171	Blackbridge Lane	3506.0	1.3
L172	Blackbridge Lane	3517.0	1.3
L173	Blackbridge Lane	3519.0	1.3
L174	Blackbridge Lane	3509.0	1.3
L175	Blackbridge Lane	3509.0	1.3
L176	Blackbridge Lane	3509.0	1.3
L177	Blackbridge Lane	3505.0	1.3
L178	Blackbridge Lane	3511.0	1.3

Road Link	DS Scenario		
	24 Hr AADT Flow	HDV Prop (%)	
L179	Blackbridge Lane	3514.0	1.3
L180	Blackbridge Lane	3510.0	1.3
L181	Blackbridge Lane	3509.0	1.3
L182	Blackbridge Lane	3506.0	1.4
L183	Blackbridge Lane	3511.0	1.3
L184	Blackbridge Lane	3509.0	1.3
L185	Blackbridge Lane	709.0	1.4
L186	Blackbridge Lane	3506.0	1.3
L187	Blackbridge Lane	3510.0	1.3
L188	Blackbridge Lane	3511.0	1.3
L189	Blackbridge Lane	3507.0	1.3
L190	Blackbridge Lane	3508.0	1.3
L191	Blackbridge Lane	3509.0	1.3
L192	Blackbridge Lane	3509.0	1.3
L193	Blackbridge Lane	3509.0	1.3
L194	Blackbridge Lane	3509.0	1.3
L195	Blackbridge Lane	3510.0	1.3
L196	Blackbridge Lane	712.0	1.4
L197	Blackbridge Lane	3510.0	1.3
L198	Blackbridge Lane	3508.0	1.3
L199	Brighton Road	12052.0	1.5
L200	Brighton Road	19627.0	1.9
L201	Brighton Road	13314.0	1.6
L202	Brighton Road	12350.0	1.5
L203	Brighton Road	14182.0	1.6
L204	Brighton Road	17792.0	1.9
L205	Brighton Road	16160.0	1.8
L206	Brighton Road	12631.0	1.5
L207	Brighton Road	20630.0	1.9
L208	Brighton Road	18247.0	1.9
L209	Brighton Road	12053.0	1.5
L210	Brighton Road	12622.0	1.5
L211	Brighton Road	20341.0	1.9
L212	Brighton Road	12338.0	1.5
L213	Brighton Road	17431.0	1.9

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L214	Brighton Road	12055.0	1.5
L215	Brighton Road	19134.0	1.9
L216	Broadbridge Heath Bypass	26618.0	3.1
L217	Broadbridge Heath Bypass	26252.0	3.1
L218	Broadbridge Heath Bypass	20679.0	3.0
L219	Broadbridge Heath Bypass	26590.0	3.1
L220	Broadbridge Heath Bypass	20868.0	3.0
L221	Broadbridge Heath Bypass	20388.0	3.0
L222	Broadbridge Heath Road	3470.0	1.4
L223	Broadbridge Heath Road	3404.0	1.4
L224	Broadbridge Way	3489.0	1.4
L225	Broadbridge Way	3500.0	1.4
L226	Broadbridge Way	3500.0	1.4
L227	Broadbridge Way	3493.0	1.4
L228	Broadbridge Way	3500.0	1.4
L229	Broadbridge Way	3502.0	1.4
L230	Broadbridge Way	3499.0	1.4
L231	Broadbridge Way	3501.0	1.4
L232	Broadbridge Way	3502.0	1.4
L233	Broadbridge Way	3506.0	1.4
L234	Broadbridge Way	3501.0	1.4
L235	Broadbridge Way	3493.0	1.4
L236	Broadbridge Way	3501.0	1.4
L237	Broadbridge Way	3498.0	1.4
L238	Broadbridge Way	3499.0	1.4
L239	Broadbridge Way	3500.0	1.4
L240	Broadbridge Way	3498.0	1.4
L241	Broadbridge Way	3495.0	1.4
L242	Broadbridge Way	3490.0	1.4
L243	Broadbridge Way	3499.0	1.4
L244	Broadbridge Way	3491.0	1.4
L245	Broadbridge Way	3500.0	1.4
L246	Broadbridge Way	3500.0	1.4
L247	Broadbridge Way	3501.0	1.4
L248	C622	31880.0	3.1

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L249	C622	32078.0	3.1
L250	East Street	22997.0	1.9
L251	East Street	23767.0	1.8
L252	East Street	23582.0	1.9
L253	East Street	23709.0	1.8
L254	East Street	23675.0	1.9
L255	East Street	23430.0	1.9
L256	East Street	23162.0	1.9
L257	Farthings Hill	26427.0	2.6
L258	Farthings Hill	26500.0	2.6
L259	Farthings Hill	30518.0	3.0
L260	Farthings Hill	30699.0	3.0
L261	Farthings Hill	28962.0	2.9
L262	Farthings Hill	27484.0	2.7
L263	Farthings Hill	29011.0	2.9
L264	Farthings Hill	30113.0	3.0
L265	Farthings Hill	28246.0	2.9
L266	Farthings Hill	28760.0	2.9
L267	Farthings Hill	30239.0	3.0
L268	Farthings Hill Interchange	31499.0	3.1
L269	Farthings Hill Interchange	31378.0	3.1
L270	Farthings Hill Interchange	32133.0	3.1
L271	Farthings Hill Interchange	31646.0	3.1
L272	Farthings Hill Interchange	30782.0	3.0
L273	Farthings Hill Interchange	31959.0	3.1
L274	Farthings Hill Interchange	30697.0	3.0
L275	Farthings Hill Interchange	37279.0	3.2
L276	Farthings Hill Interchange	32227.0	3.1
L277	Farthings Walk	30687.0	3.0
L278	Farthings Walk	30938.0	3.0
L279	Five Oaks Road	27372.0	3.1
L280	Five Oaks Road	27348.0	3.1
L281	Five Oaks Road	27214.0	3.1
L282	Five Oaks Road	27335.0	3.1
L283	Five Oaks Road	28095.0	3.1

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L284	Five Oaks Road	27309.0	3.1
L285	Five Oaks Road	27941.0	3.1
L286	Five Oaks Road	27413.0	3.1
L287	Five Oaks Road	27411.0	3.1
L288	Five Oaks Road	27447.0	3.1
L289	Five Oaks Road	28027.0	3.1
L290	Five Oaks Road	28110.0	3.3
L291	Five Oaks Road	27147.0	3.1
L292	Five Oaks Road	27274.0	3.1
L293	Five Oaks Road	27581.0	3.1
L294	Five Oaks Road	27488.0	3.1
L295	Five Oaks Road	27478.0	3.1
L296	Five Oaks Road	27304.0	3.1
L297	Five Oaks Road	27194.0	3.1
L298	Five Oaks Road	28098.0	3.1
L299	Gatefield Cottages	763.0	1.6
L300	Guildford Road	20136.0	3.0
L301	Guildford Road	24574.0	2.5
L302	Guildford Road	24858.0	2.5
L303	Guildford Road	19454.0	2.9
L304	Guildford Road	20751.0	2.2
L305	Guildford Road	21037.0	3.1
L306	Guildford Road	23250.0	2.4
L307	Guildford Road	23394.0	2.4
L308	Guildford Road	26315.0	2.4
L309	Guildford Road	19450.0	2.9
L310	Guildford Road	26349.0	2.3
L311	Guildford Road	25713.0	2.5
L312	Guildford Road	20666.0	3.0
L313	Guildford Road	22076.0	2.3
L314	Guildford Road	17784.0	1.9
L315	Guildford Road	26221.0	2.3
L316	Guildford Road	15660.0	1.6
L317	Guildford Road	17401.0	2.9
L318	Guildford Road	20174.0	3.0

Road Link	DS Scenario		
	24 Hr AADT Flow	HDV Prop (%)	
L319	Guildford Road	20500.0	3.0
L320	Guildford Road	19917.0	2.1
L321	Guildford Road	20214.0	3.0
L322	Guildford Road	24980.0	2.3
L323	Guildford Road	24227.0	2.4
L324	Guildford Road	16456.0	1.7
L325	Guildford Road	20376.0	3.0
L326	Guildford Road	24475.0	2.5
L327	Hayes Lane	774.0	1.6
L328	Heath Retail Park	38958.0	3.2
L329	Highwood allotment	32414.0	3.2
L330	Highwood allotment	32814.0	3.2
L331	Hills Farm Lane	3498.0	1.3
L332	Hills Farm Lane	3504.0	1.3
L333	Hills Farm Lane	3500.0	1.3
L334	Hills Farm Lane	3503.0	1.3
L335	Hills Farm Lane	3500.0	1.3
L336	Hills Farm Lane	3497.0	1.3
L337	Hills Farm Lane	3504.0	1.3
L338	Hills Farm Lane	3498.0	1.3
L339	Hills Farm Lane	3504.0	1.3
L340	Hills Farm Lane	3503.0	1.3
L341	Hills Farm Lane	3501.0	1.3
L342	Hills Farm Lane	3499.0	1.3
L343	Hills Farm Lane	3503.0	1.3
L344	Hills Farm Lane	3502.0	1.3
L345	Hills Farm Lane	3504.0	1.3
L346	Hills Farm Lane	3504.0	1.3
L347	Hills Farm Lane	3504.0	1.3
L348	Hills Farm Lane	3502.0	1.3
L349	Hills Farm Lane	3497.0	1.3
L350	Hills Farm Lane	3498.0	1.3
L351	Hills Farm Lane	3504.0	1.3
L352	Hills Farm Lane	3503.0	1.3
L353	Hills Farm Lane	3498.0	1.3

Road Link	DS Scenario		
	24 Hr AADT Flow	HDV Prop (%)	
L354	Hills Farm Lane	3501.0	1.3
L355	Hills Farm Lane	3504.0	1.3
L356	Hills Farm Lane	3503.0	1.3
L357	Hills Farm Lane	3500.0	1.3
L358	Hills Farm Lane	3503.0	1.3
L359	London Road	6725.0	3.0
L360	London Road	6717.0	3.0
L361	London Road	6719.0	3.0
L362	London Road	6714.0	3.0
L363	London Road	6735.0	3.0
L364	London Road	6735.0	3.0
L365	London Road	6713.0	3.0
L366	Lyons Road	3543.0	1.5
L367	Lyons Road	3503.0	1.5
L368	Lyons Road	3529.0	1.4
L369	Lyons Road	3529.0	1.4
L370	Newbridge Roundabout	26955.0	3.1
L371	Newbridge Roundabout	26713.0	3.1
L372	Newbridge Roundabout	26914.0	3.1
L373	Newton House	766.0	1.5
L374	North Parade	6811.0	3.0
L375	North Parade	6848.0	3.0
L376	North Parade	6850.0	3.0
L377	North Parade	6737.0	3.0
L378	North Parade	6809.0	3.0
L379	North Parade	6841.0	3.0
L380	North Parade	6752.0	3.0
L381	North Parade	6774.0	3.0
L382	North Parade	6809.0	3.0
L383	North Parade	6833.0	3.0
L384	North Parade	6828.0	3.0
L385	North Parade	6823.0	3.0
L386	North Parade	6854.0	3.0
L387	North Parade	6786.0	3.0
L388	North Parade	6774.0	3.0

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L389	North Parade	6776.0	3.0
L390	North Parade	6747.0	3.0
L391	North Parade	6831.0	3.0
L392	North Parade	6780.0	3.0
L393	North Parade	6800.0	3.0
L394	North Parade	6748.0	3.0
L395	North Parade	6761.0	3.0
L396	North Parade	6743.0	3.0
L397	North Parade	6774.0	3.0
L398	North Parade	6817.0	3.0
L399	North Parade	6814.0	3.0
L400	North Parade	6844.0	3.0
L401	North Parade	6794.0	3.0
L402	North Parade	6798.0	3.0
L403	North Parade	6796.0	3.0
L404	North Parade	6756.0	3.0
L405	North Parade	6793.0	3.0
L406	North Parade	6820.0	3.0
L407	North Parade	6807.0	3.0
L408	North Parade	6836.0	3.0
L409	Old Guildford Rd	31106.0	3.1
L410	Old Guildford Road	3476.0	1.4
L411	Old Guildford Road	3479.0	1.4
L412	Old Guildford Road	3471.0	1.4
L413	Old Guildford Road	3485.0	1.4
L414	Old Guildford Road	3479.0	1.4
L415	Old Guildford Road	3480.0	1.4
L416	Old Guildford Road	3483.0	1.4
L417	Old Guildford Road	3486.0	1.4
L418	Old Guildford Road	3469.0	1.4
L419	Old Guildford Road	3480.0	1.4
L420	Old Guildford Road	3487.0	1.4
L421	Old Guildford Road	3478.0	1.4
L422	Old Guildford Road	3479.0	1.4
L423	Old Guildford Road	3475.0	1.4

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L424	Old Guildford Road	3473.0	1.4
L425	Old Guildford Road	3481.0	1.4
L426	Old Guildford Road	3482.0	1.4
L427	Old Guildford Road	3480.0	1.4
L428	Old Guildford Road	3466.0	1.4
L429	Old Guildford Road	3470.0	1.4
L430	Old Guildford Road	3477.0	1.4
L431	Old Guildford Road	3469.0	1.4
L432	Old Guildford Road	3478.0	1.4
L433	Old Guildford Road	3466.0	1.4
L434	Old Guildford Road	3467.0	1.4
L435	Old Guildford Road	3480.0	1.4
L436	Old Guildford Road	3480.0	1.4
L437	Old Guildford Road	3480.0	1.4
L438	Old Guildford Road	3480.0	1.4
L439	Old Guildford Road	3468.0	1.4
L440	Park Street	3470.0	1.5
L441	Park Way	12993.0	1.8
L442	Park Way	12993.0	1.7
L443	Park Way	23947.0	1.8
L444	Park Way	12993.0	1.7
L445	Park Way	12993.0	1.7
L446	Park Way	23921.0	1.8
L447	Park Way	12993.0	1.7
L448	Park Way	23926.0	1.8
L449	Park Way	12993.0	1.8
L450	Park Way	12993.0	1.7
L451	Park Way	12993.0	1.7
L452	Park Way	12993.0	1.8
L453	Queen Street	21278.0	1.9
L454	Queen Street	20964.0	1.9
L455	Queen Street	21065.0	1.9
L456	Queen Street	22596.0	1.9
L457	Queen Street	21065.0	1.9
L458	Queen Street	21670.0	1.9

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L459	Queen Street	22295.0	1.9
L460	Robin Hood Ln	42454.0	3.4
L461	Robin Hood Roundabout	41694.0	3.4
L462	Robin Hood Roundabout	42176.0	3.4
L463	Robin Hood Roundabout	42542.0	3.4
L464	South Pilfolds	33196.0	3.3
L465	Spring Lane	764.0	1.5
L466	Spring Lane	763.0	1.5
L467	Spring Lane	764.0	1.5
L468	Spring Lane	764.0	1.5
L469	Spring Lane	765.0	1.5
L470	Spring Lane	764.0	1.5
L471	Spring Lane	764.0	1.5
L472	Springfield Road	6736.0	3.0
L473	Springfield Road	6716.0	3.0
L474	Springfield Road	6714.0	3.0
L475	Springfield Road	6720.0	3.0
L476	Springfield Road	6731.0	3.0
L477	Springfield Road	6717.0	3.0
L478	Springfield Road	6715.0	3.0
L479	Springfield Road	6727.0	3.0
L480	Stane Street	14344.0	3.4
L481	The Street	3479.0	1.5
L482	The Street	3489.0	1.5
L483	The Street	3492.0	1.5
L484	The Street	3484.0	1.5
L485	The Street	3483.0	1.5
L486	The Street	3502.0	1.5
L487	The Street	3479.0	1.5
L488	The Street	3485.0	1.5
L489	The Street	3487.0	1.5
L490	The Street	3497.0	1.5
L491	The Street	3489.0	1.5
L492	The Street	3480.0	1.5
L493	Tower Hill	3456.0	1.2

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L494	Tower Hill	3500.0	1.2
L495	Tower Hill	3464.0	1.2
L496	Tower Hill	3472.0	1.2
L497	Tower Hill	3439.0	1.1
L498	Tower Hill	3469.0	1.2
L499	Tower Hill	3480.0	1.2
L500	Tower Hill	3399.0	1.1
L501	Warnham Road	6894.0	3.0
L502	Warnham Road	6882.0	3.0
L503	Warnham Road	6916.0	3.0
L504	Warnham Road	6860.0	3.0
L505	Warnham Road	6875.0	3.0
L506	Warnham Road	6904.0	3.0
L507	Warnham Road	6912.0	3.0
L508	Warnham Road	6915.0	3.0
L509	Warnham Road	3478.0	1.4
L510	Warnham Road	6899.0	3.0
L511	Warnham Road	6897.0	3.0
L512	Warnham Road	6899.0	3.0
L513	Warnham Road	6909.0	3.0
L514	Wildwood	25258.0	2.5
L515	Worthing Road	6674.0	3.0
L516	Worthing Road	6559.0	3.0
L517	Worthing Road	6532.0	3.0
L518	Worthing Road	6674.0	3.0
L519	Worthing Road	6676.0	3.0
L520	Worthing Road	6668.0	3.0
L521	Worthing Road	6672.0	3.0
L522	Worthing Road	6596.0	3.0
L523	Worthing Road	6675.0	3.0
L524	Worthing Road	6566.0	3.0
L525	Worthing Road	6673.0	3.0
L526	Worthing Road	20444.0	3.0
L527	Worthing Road	6663.0	3.0
L528	Worthing Road	6674.0	3.0

Road Link		DS Scenario	
		24 Hr AADT Flow	HDV Prop (%)
L529	Worthing Road	6670.0	3.0
L530	Worthing Road	6672.0	3.0
L531	Worthing Road	6672.0	3.0
L532	Worthing Road	6670.0	3.0
L533	Worthing Road	20444.0	3.0

Reference should be made to Figure 6 within Appendix A for a graphical representation of the road link locations used within the operation phase assessment.

Emission Factors

Emission factors for each link were calculated using the relevant traffic flows and the Emissions Factor Toolkit (version 12.0) released in December 2023, which incorporates updated COPERT v5.6 vehicle emissions factors for NO_x, PM₁₀ and PM_{2.5} and EURO 6 vehicle fleet sub-categories.

NO_x to NO₂ Conversion

Predicted annual mean NO_x concentrations from the dispersion model were converted to NO₂ concentrations using the NO_x to NO₂ Calculator (v.8.1) provided by DEFRA, which is the method detailed within LAQM.TG(22).

Meteorological Data

Meteorological data used in this assessment was taken from Charlwood meteorological station over the period 1st January 2023 to 31st December 2023 (inclusive).

Charlwood meteorological station is located at approximate NGR: 523979, 139795 which is approximately 15.21km East of the Proposed Development. Charlwood data has been used for this assessment as it represents the closest meteorological station to the development site and as such, it is considered to provide a reasonable representation of conditions present.

All meteorological records used in the assessment were provided by the Met Office. Reference should be made to Figure 5 within Appendix A for a wind rose of utilised meteorological data.

Roughness Length

The specific roughness length (z_0) values used to represent conditions during the verification process, DS scenario, as well as conditions at the Charlwood meteorological station are summarised in Table B3.

Table B3: Utilised Roughness Lengths

Scenario	Roughness Length (m)	ADMS Description
Verification, DM and DS Scenarios	0.5	Parkland, open suburbia
Charlwood	0.3	Agricultural areas (max)

These values of z_0 are considered appropriate for the morphology of the assessment area.

Monin-Obukhov Length

The Monin-Obukhov length provides a measure of the stability of the atmosphere within certain urban or rural contexts. The specific length values used to represent conditions during the verification process, DS scenario, as well as conditions at Charlwood are summarised in Table B4.

Table B4: Utilised Monin-Obukhov Lengths

Scenario	Monin-Obukhov Length (m)	ADMS Description
Verification, DM and DS Scenarios	30	Cities and large towns or Mixed urban/industrial
Charlwood	30	Cities and large towns or Mixed urban/industrial

This Monin-Obukhov value is considered appropriate for the morphology of the assessment area.

Background Concentrations

The 2023 annual mean background concentrations detailed in Table B5, were used in the dispersion modelling assessment to represent annual mean pollutant levels at the Proposed Development site and local monitoring sites.

Table B5 displays the specific background concentrations as predicted by DEFRA, utilised to represent the condition at the monitoring locations used within the verification process.

Table B5: Predicted Background Pollutant Concentrations for Monitoring Locations

Monitoring Location	DEFRA Grid Square	Pollutant	2023 Predicted Background Concentration ($\mu\text{g}/\text{m}^3$)
4	(514500, 130500)	NO _x	10.854
		NO ₂	8.4188
		PM ₁₀	10.9534
		PM _{2.5}	6.4784
11	(516500, 130500)	NO _x	13.0168
		NO ₂	9.9635
		PM ₁₀	11.1346
		PM _{2.5}	7.0184
26	(516500, 130500)	NO _x	13.0168
		NO ₂	9.9635
		PM ₁₀	11.1346
		PM _{2.5}	7.0184
HO2	(517500, 130500)	NO _x	14.0028
		NO ₂	10.6534
		PM ₁₀	11.1421
		PM _{2.5}	7.0898

Verification

The predicted results from a dispersion model may differ from measured concentrations for a large number of reasons, including:

- Estimates of background concentrations;
- Uncertainties in source activity data such as traffic flows and emission factors;
- Variations in meteorological conditions;
- Overall model limitations; and
- Uncertainties associated with monitoring data, including locations.

Model verification is the process by which these and other uncertainties are investigated and where possible minimised. In reality, the differences between modelled and monitored results are likely to be a combination of all of these aspects.

For the purpose of this assessment model verification was undertaken for 2023, using traffic data, meteorological data and monitoring results from this year.

HDC undertakes periodic monitoring of NO₂ concentrations at 4 roadside monitoring locations within the assessment extent. The road contribution to total NO_x concentration was calculated from the monitored NO₂ result for use in the verification process. This was undertaken following the methodology contained within LAQM.TG(22). The monitored annual mean NO_x concentration and calculated road NO_x concentration are summarised in Table B6.

Table B6: NO_x Concentrations

Site ID	Monitored Road NO _x Concentration (µg/m ³)	Modelled Road NO _x Concentration (µg/m ³)
4	3.67	6.702
11	19.18	28.178
26	22.51	24.018
HO2	11.93	13.516

The monitored and modelled NO_x Road contribution concentrations were compared, and this indicated that a verification factor of **0.7926** was required to be applied to NO_x modelling results, as shown in Graph 1.

Graph 1 is provided below.

Graph 1 - Verification Adjustment Factor

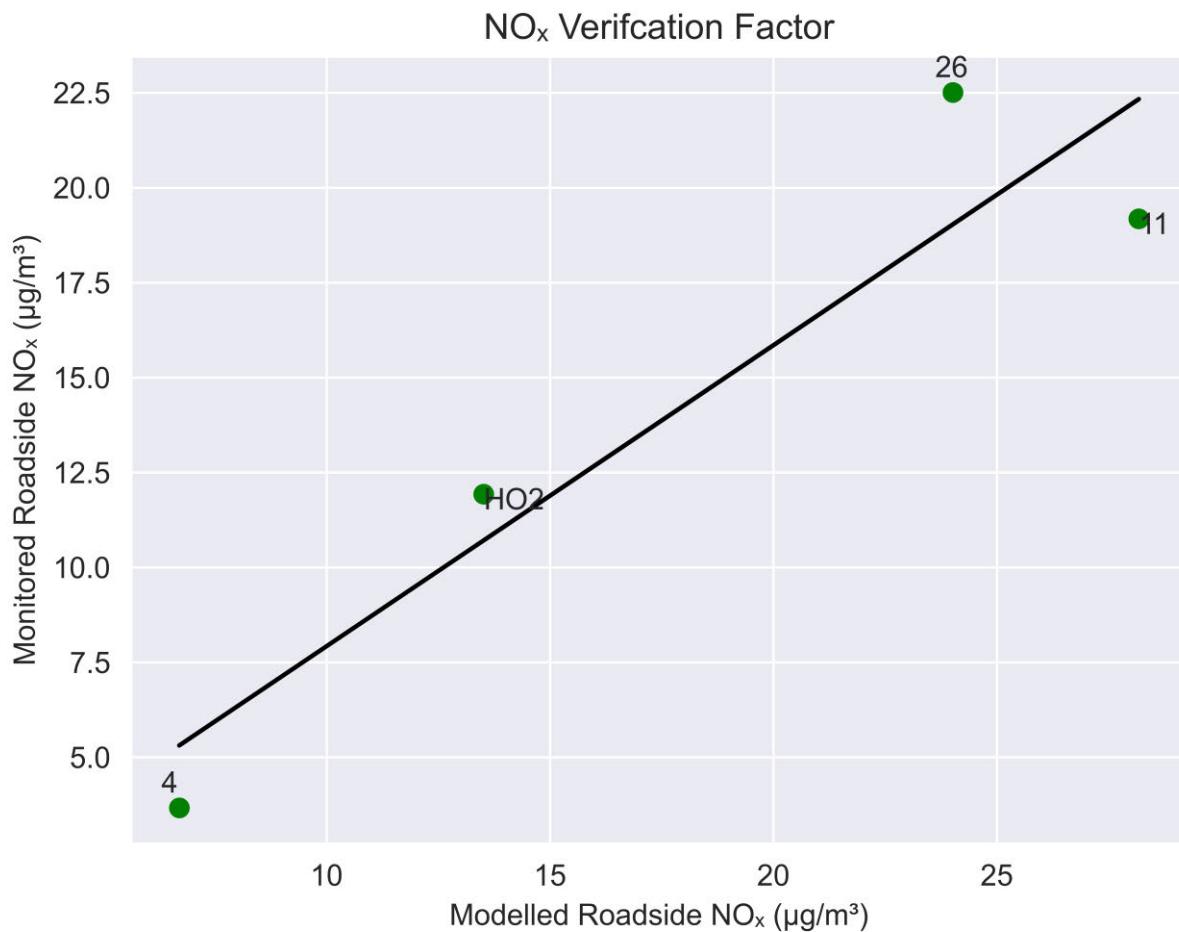
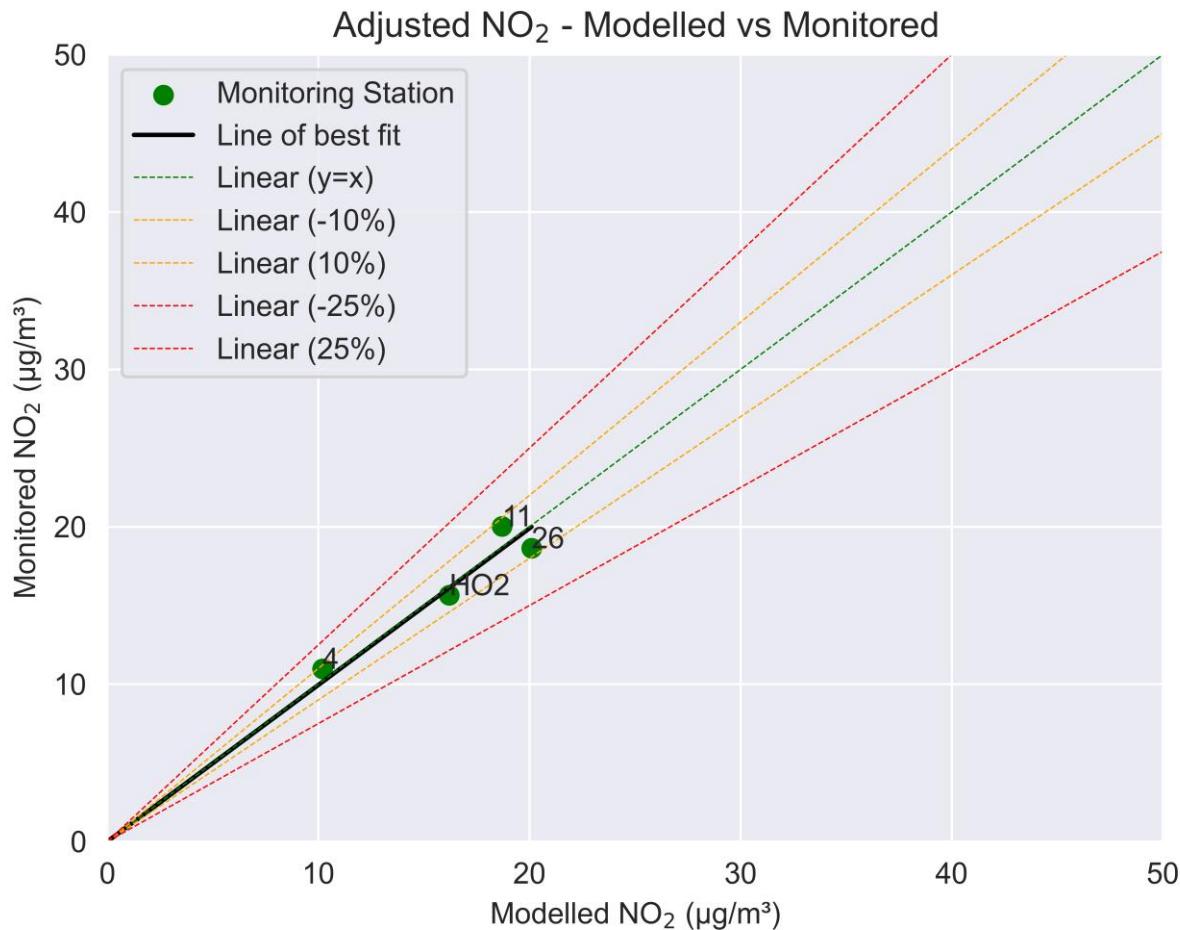


Table B7 presents the monitored annual mean NO₂ concentrations and the adjusted modelled total NO₂ concentration based on the above verification factor. Exceedances of the annual mean NO₂ AQO are highlighted in **bold**.


Table B7: NO₂ Concentrations

Site ID	Monitored Road NO ₂ Concentration (µg/m ³)	Adjusted Modelled Road NO ₂ Concentration (µg/m ³)	% Difference ((Monitored - Modelled)/Monitored) * 100
4	10.2	10.979	-7.64%
11	18.7	20.024	-7.08%
26	20.1	18.644	7.25%
HO2	16.2	15.653	3.37%

As demonstrated in Table B7, the percentage difference between modelled and monitored concentrations is deemed acceptable and is less than 25% in all cases, and less than or equal to 10% at all locations. This reduces uncertainties in the model predictions and provides a robust representation of pollutant concentrations in accordance with the guidance suggested in LAQM.TG(22).

A graphical representation of the adjusted NO₂ concentrations is provided within Graph 2.

Graph 2 – Modelled vs Monitored NO₂

Horsham District Council also undertakes monitoring of annual mean PM₁₀ and PM_{2.5} at only 1 monitoring location within the assessment extent. As such, it was determined appropriate to use the NO₂ adjustment factor of **0.7926** to adjust model predictions of PM₁₀ and PM_{2.5}.

APPENDIX C: CONSTRUCTION PHASE METHODOLOGY

There is the potential for fugitive dust emissions to occur as a result of construction phase activities. These have been assessed in accordance with the methodology outlined within the Institute of Air Quality Management (IAQM) document 'Guidance on the Assessment of Dust from Demolition and Construction'.

Activities on the proposed construction site have been divided into three types to reflect their different potential impacts. These are:

- Demolition
- Earthworks
- Construction
- Trackout

The potential for dust emissions was assessed for each activity that is likely to take place and considered three separate dust effects:

- Annoyance due to dust soiling;
- Harm to ecological receptors; and
- The risk of health effects due to a significant increase in exposure to PM₁₀ and PM_{2.5}.

The assessment steps are detailed below.

Step 1

Step 1 screens the requirement for a more detailed assessment. Should human receptors be identified within 250m from the site boundary or 50m from the construction vehicle route up to 250m from the site entrance, then the assessment should proceed to Step 2. Additionally, should ecological receptors be identified within 50m of the boundary site or 50m from the construction vehicle route up to 250m from the site entrance, then the assessment should also proceed to Step 2.

Should sensitive receptors not be present within the relevant distances then negligible impacts would be expected and further assessment is not necessary.

Step 2

Step 2 assesses the risk of potential dust impacts. A site is allocated to a risk category based on two factors:

- The scale and nature of the works, which determines the magnitude of dust arising as: small, medium or large (Step 2A); and
- The sensitivity of the area to dust impacts, which can be defined as low, medium or high sensitivity (Step 2B).

The two factors are combined in Step 2C to determine the risk of dust impacts without mitigation applied.

Step 2A defines the potential magnitude of dust emission through the construction phase. The relevant criteria are summarised in Table C1.

Table C1: Construction Dust - Magnitude of Emission

Magnitude	Activity	Criteria
Large	Demolition	<ul style="list-style-type: none">• Total building volume greater than 75,000m³• Potentially dusty construction material (e.g. concrete)• On-site crushing and screening• Demolition activities greater than 12m above ground level

Magnitude	Activity	Criteria
	Earthworks	<ul style="list-style-type: none"> • Total site area greater than 110,000m² • Potentially dusty soil type (e.g. clay, which will be prone to suspension when dry due to small particle size) • More than 10 heavy earth moving vehicles active at any one time • Formation of bunds greater than 6m in height
	Construction	<ul style="list-style-type: none"> • Total building volume greater than 75,000m³ • On site concrete batching • Sandblasting
	Trackout	<ul style="list-style-type: none"> • More than 50 Heavy Duty Vehicle (HDV) trips per day • Potentially dusty surface material (e.g. high clay content) • Unpaved road length greater than 100m
Medium	Demolition	<ul style="list-style-type: none"> • Total building volume 12,000m³ to 75,000m³ • Potentially dusty construction material • Demolition activities 6m to 12m above ground level
	Earthworks	<ul style="list-style-type: none"> • Total site area 18,000m² to 110,000m² • Moderately dusty soil type (e.g. silt) • 5 to 10 heavy earth moving vehicles active at any one time • Formation of bunds 3m to 6m in height
	Construction	<ul style="list-style-type: none"> • Total building volume 18,000m³ to 110,000m³ • Potentially dusty construction material (e.g. concrete) • On site concrete batching
	Trackout	<ul style="list-style-type: none"> • 20 to 50 HDV trips per day • Moderately dusty surface material (e.g. high clay content) • Unpaved road length 50m to 100m
Small	Demolition	<ul style="list-style-type: none"> • Total building volume under 12,000m³ • Construction material with low potential for dust release (e.g. metal cladding or timber) • Demolition activities less than 6m above ground level • Demolition during wetter months
	Earthworks	<ul style="list-style-type: none"> • Total site area less than 18,000m² • Soil type with large grain size (e.g. sand) • Less than 5 heavy earth moving vehicles active at any one time • Formation of bunds less than 4m in height • Earthworks during wetter months
	Construction	<ul style="list-style-type: none"> • Total building volume less than 18,000m³ • Construction material with low potential for dust release (e.g. metal cladding or timber)
	Trackout	<ul style="list-style-type: none"> • <20 HDV (3.5t) outward movements in any one day • Surface material with low potential for dust release • Unpaved road length <50m

Step 2B defines the sensitivity of the area around the development site for construction, earthworks and trackout. The factors influencing the sensitivity of the area are shown in Table C2.

Table C2: Examples of Factors Defining Sensitivity of an Area

Sensitivity	Examples	
	Human Receptors	Ecological Receptors
High	<ul style="list-style-type: none"> Users expect of high levels of amenity High aesthetic or value property People expected to be present continuously for extended periods of time Locations where members of the public are exposed over a time period relevant to the AQO for PM₁₀ e.g. residential properties, hospitals, schools and residential care homes 	<ul style="list-style-type: none"> Internationally or nationally designated site e.g. Special Area of Conservation
Medium	<ul style="list-style-type: none"> Users would expect to enjoy a reasonable level of amenity Aesthetics or value of their property could be diminished by soiling People or property wouldn't reasonably be expected to be present here continuously or regularly for extended periods as part of the normal pattern of use of the land e.g. parks and places of work 	<ul style="list-style-type: none"> Nationally designated site e.g. Sites of Special Scientific Interest
Low	<ul style="list-style-type: none"> Enjoyment of amenity would not reasonably be expected Property would not be expected to be diminished in appearance Transient exposure, where people would only be expected to be present for limited periods. e.g. public footpaths, playing fields, shopping streets, playing fields, farmland, footpaths, short term car park and roads 	<ul style="list-style-type: none"> Locally designated site e.g. Local Nature Reserve

The guidance also provides the following factors to consider when determining the sensitivity of an area to potential dust impacts during the construction phase:

- Any history of dust generating activities in the area;
- The likelihood of concurrent dust generating activity on nearby sites;
- Any pre-existing screening between the source and the receptors;
- Any conclusions drawn from analysing local meteorological data which accurately represent the area; and if relevant the season during which works will take place;
- Any conclusions drawn from local topography;
- Duration of the potential impact, as a receptor may become more sensitive over time; and
- Any known specific receptor sensitivities which go beyond the classifications given in the document.

These factors were considered in the undertaking of this assessment. The sensitivity of the area to dust soiling effects on people and property is shown in Table C3.

Table C3: Sensitivity of the Area to Dust Soiling Effects on People and Property

Receptor Sensitivity	Number of Receptors	Distance from the Source (m)			
		Less than 20	Less than 50	Less than 100	Less than 250
High	More than 100	High	High	Medium	Low
	10 - 100	High	Medium	Low	Low
	1 - 10	Medium	Low	Low	Low
Medium	More than 1	Medium	Low	Low	Low

Receptor Sensitivity	Number of Receptors	Distance from the Source (m)			
		Less than 20	Less than 50	Less than 100	Less than 250
Low	More than 1	Low	Low	Low	Low

Table C4 outlines the sensitivity of the area to human health impacts.

Table C4: Sensitivity of the Area to Human Health Impacts

Receptor Sensitivity	Annual Mean PM ₁₀ Concentration	Number of Receptors	Distance to Site			
			Less than 20	Less than 50	Less than 100	Less than 250
High	Greater than 32µg/m ³	More than 100	High	High	High	Medium
		10 - 100	High	High	Medium	Low
		1 - 10	High	Medium	Low	Low
	28 - 32µg/m ³	More than 100	High	High	Medium	Low
		10 - 100	High	Medium	Low	Low
		1 - 10	High	Medium	Low	Low
	24 - 28µg/m ³	More than 100	High	Medium	Low	Low
		10 - 100	High	Medium	Low	Low
		1 - 10	Medium	Low	Low	Low
	Less than 24µg/m ³	More than 100	Medium	Low	Low	Low
		10 - 100	Low	Low	Low	Low
		1 - 10	Low	Low	Low	Low
Medium	Greater than 32µg/m ³	More than 10	High	Medium	Low	Low
		1 - 10	Medium	Low	Low	Low
	28 - 32µg/m ³	More than 10	Medium	Low	Low	Low
		1 - 10	Low	Low	Low	Low
	24 - 28µg/m ³	More than 10	Low	Low	Low	Low
		1 - 10	Low	Low	Low	Low
	Less than 24µg/m ³	More than 10	Low	Low	Low	Low
		1 - 10	Low	Low	Low	Low
Low	-	More than 1	Low	Low	Low	Low

Table C5 outlines the sensitivity of the area to ecological impacts.

Table C5: Sensitivity of the Area to Ecological Impacts

Receptor Sensitivity	Distance from the Source (m)	
	Less than 20	Less than 50
High	High	Medium
Medium	Medium	Low

Receptor Sensitivity	Distance from the Source (m)	
	Less than 20	Less than 50
Low	Low	Low

Step 2C combines the dust emission magnitude with the sensitivity of the area to determine the risk of unmitigated impacts.

Table C6: Dust Risk Category from Demolition

Receptor Sensitivity	Dust Emission Magnitude		
	Large	Medium	Small
High	High	Medium	Medium
Medium	High	Medium	Low
Low	Medium	Low	Negligible

Table C7 outlines the risk category from earthworks and construction activities.

Table C7: Dust Risk Category from Earthworks and Construction

Receptor Sensitivity	Dust Emission Magnitude		
	Large	Medium	Small
High	High	Medium	Low
Medium	Medium	Medium	Low
Low	Low	Low	Negligible

Table C8 outlines the risk category from trackout.

Table C8: Dust Risk Category from Trackout

Receptor Sensitivity	Dust Emission Magnitude		
	Large	Medium	Small
High	High	Medium	Low
Medium	Medium	Medium	Low
Low	Low	Low	Negligible

Step 3

Step 3 requires the identification of site-specific mitigation measures within the IAQM guidance to reduce potential dust impacts based upon the relevant risk categories identified in Step 2. For sites with negligible risk mitigation measures beyond those required by legislation are not required. However, additional controls may be applied as part of good practice.

Step 4

Once the risk of dust impacts has been determined and the appropriate mitigation measures identified, the final step is to determine the significance of any residual impacts. For almost all construction activity, the aim should be to control effects through the use of effective mitigation. Experience shows that this is normally possible. Hence the residual effect will normally be 'not significant'.