

APPENDIX 6.1: ALC SURVEY REPORT

A1
Horsham District Local Plan
Land at Ifield Court Farm,
Crawley.
Reconnaissance Survey
Agricultural Land Classification
ALC Map and Report
March 1995

AGRICULTURAL LAND CLASSIFICATION REPORT

HORSHAM DISTRICT LOCAL PLAN. LAND AT IFIELD COURT FARM, CRAWLEY. RECONNAISSANCE SURVEY.

1. Summary

- 1.1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the Horsham District of West Sussex. The work forms part of MAFF's statutory input to the preparation of the Horsham District Local Plan.
- 1.2 The site comprises 120 hectares of land around Ifield Court Farm at Ifield, north-west of Crawley in West Sussex. An Agricultural Land Classification (ALC) survey was carried out in March 1995. The survey was undertaken at a reconnaissance level of approximately one boring per 5 hectares of agricultural land surveyed. The southern half of the site has been previously surveyed by Bioscan UK Ltd in January 1995. Consequently, the boring density of the ADAS survey was decreased in this area of the site, being sufficient to verify the Bioscan findings. A total of 21 borings and two soil inspection pits were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land, (MAFF, 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture.
- 1.3 The survey work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS.
- 1.4 At the time of the survey the agricultural land on the site comprised permanent grassland, cereals and recently ploughed land. Areas marked as non-agricultural include scrubland and areas of woodland have also been marked on the map. Areas of urban comprise private dwellings, gardens and tarmac roads. An area of open water has been mapped around Ifield Court Hotel and farm buildings have been mapped around Ifield Court Farm.
- 1.5 The distribution of grades and subgrades is shown on the attached ALC map, and the areas and extent are given in the table below. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

Table 1 : Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site
3b	99.0	82.5
Non-agricultural	1.0	0.8
Woodland	1.7	1.4
Urban	17.3	14.5
Farm buildings	0.6	0.5
Open Water	0.4	0.3
Total area of site	120.0	100%

1.6 Appendix I gives a general description of the grades, subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur, the typical cropping range and the expected level and consistency of yield.

1.7 The majority of the agricultural land on the site has been classified as Subgrade 3b, moderate quality land, with soil wetness as the main limitation. Soil profiles typically comprise medium clay loam and heavy clay loam topsoils resting upon clay subsoils. Profiles are commonly gleyed from the topsoil, and the clay subsoils are slowly permeable and significantly impede drainage, such that a classification of Subgrade 3b is appropriate. Poorly drained wet soils restrict plant growth and development and may be more susceptible to structural damage through trafficking by agricultural machinery or poaching by grazing livestock.
The previous Bioscan survey similarly found land to be classified as Subgrade 3b due to a wetness limitation.

2. Climate

.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe climatic limitations will restrict land to low grades irrespective of favourable site or soil conditions.

2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall, as a measure of overall wetness, and accumulated temperature (degree days Jan-June), as a measure of the relative warmth of a locality.

2.3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met. Office 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site.

2.4 However, climatic factors do interact with soil factors to influence soil wetness and droughtiness limitations. At this locality the climate is relatively warm and moist, therefore the likelihood of soil wetness problems may be increased.

2.5 No local climatic factors such as exposure or frost risk are believed to affect the site.

Table 2 : Climatic Interpolation

Grid Reference	TQ 245 381
Altitude (m)	65
Accumulated Temperature (degree days, Jan-June)	1452
Average Annual Rainfall (mm)	812
Field Capacity (days)	172
Moisture Deficit, Wheat (mm)	104
Moisture Deficit, Potatoes (mm)	96
Overall Climatic Grade	1

3. Relief

3.1 The site is relatively flat, lying at an altitude of approximately 65m AOD.

4. Geology and Soils

4.1 The published geological map (BGS, 1972) shows the majority of the site to be underlain by Weald Clay. Alluvium is mapped around watercourses, clay-ironstone beds in the north of the site and small bands of River Mole 2nd terrace deposits towards the south of the site.

4.2 The published Soil Survey map (SSEW, 1983) shows the soils on the site to comprise those of the Wickham 1 association. These are described as 'slowly permeable seasonally waterlogged fine silty over clayey, fine loamy over clayey and clayey soils' (SSEW 1983).

4.3 Detailed field examination found the majority of the soils on the site to be silty and clayey with slowly permeable subsoils.

5. Agricultural Land Classification

5.1 The location of the soil observation points are shown on the attached sample point map.

Subgrade 3b

5.2 All of the agricultural land on the site has been classified as Subgrade 3b, at a reconnaissance survey level, due to a significant soil wetness limitation. Soil profiles were found to typically comprise medium silty clay loam and heavy silty clay loam topsoils commonly resting directly upon clay subsoils. Profiles show evidence of drainage imperfections in the form of gleying, usually from the topsoils. Two soil inspection pits dug on the site indicated the clay subsoils to be poorly structured with low porosity, and therefore classified as slowly permeable layers which significantly impede drainage. The presence of gleying and the relatively shallow depth to these slowly permeable layers means that these soils are assigned to Wetness Class IV, with a resultant classification of Subgrade 3b given the prevailing climatic conditions. Poorly drained wet soils can inhibit plant and root development, and may be more susceptible to structural damage through trafficking by agricultural machinery or poaching by grazing livestock. This can in turn affect the frequency and timing of such operations.

ADAS Ref: 4205/18/95
MAFF Ref: EL 42/130

Resource Planning Team
Guildford Statutory Group
ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1972), Sheet No. 302, Horsham, 1:50,000 Series (solid and drift edition).

MAFF (1988), Agricultural Land Classification of England and Wales : Revised guidelines and criteria for grading the quality of agricultural land.

Meteorological Office (1989), Climatological Data for Agricultural Land Classification.

Soil Survey of England and Wales (1983), Sheet 6, Soils of South East England, 1:250,000 and accompanying legend.

AGRICULTURAL LAND CLASSIFICATION, SUMMARY REPORT

HORSHAM DISTRICT LOCAL PLAN. LAND AT IFIELD COURT FARM, CRAWLEY. RECONNAISSANCE SURVEY.

1. Summary

- 1.1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the Horsham District of West Sussex. The work forms part of MAFF's statutory input to the preparation of the Horsham District Local Plan.
- 1.2 The site comprises 120 hectares of land around Ifield Court Farm at Ifield, north-west of Crawley in West Sussex. An Agricultural Land Classification (ALC) survey was carried out in March 1995. The survey was undertaken at a reconnaissance level of approximately one boring per 5 hectares of agricultural land surveyed. The southern half of the site has been previously surveyed by Bioscan UK Ltd in January 1995. Consequently, the boring density of the ADAS survey was decreased in this area of the site, being sufficient to verify the Bioscan findings. A total of 21 borings and two soil inspection pits were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land, (MAFF, 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture.
- 1.3 The survey work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS.
- 1.4 At the time of the survey the agricultural land on the site comprised permanent grassland, cereals and recently ploughed land. Areas marked as non-agricultural include scrubland and areas of woodland have also been marked on the map. Areas of urban comprise private dwellings, gardens and tarmac roads. An area of open water has been mapped around Ifield Court Hotel and farm buildings have been mapped around Ifield Court Farm.
- 1.5 The distribution of grades and subgrades is shown on the attached ALC map, and the areas and extent are given in the table below. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

Table 1 : Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site
3b	99.0	82.5
Non-agricultural	1.0	0.8
Woodland	1.7	1.4
Urban	17.3	14.5
Farm buildings	0.6	0.5
Open Water	<u>0.4</u>	<u>0.3</u>
Total area of site	120.0	100%

1.6 Appendix I gives a general description of the grades, subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur, the typical cropping range and the expected level and consistency of yield.

1.7 The majority of the agricultural land on the site has been classified as Subgrade 3b, moderate quality land, with soil wetness as the main limitation. Soil profiles typically comprise medium clay loam and heavy clay loam topsoils resting upon clay subsoils. Profiles are commonly gleyed from the topsoil, and the clay subsoils are slowly permeable and significantly impede drainage, such that a classification of Subgrade 3b is appropriate. Poorly drained wet soils restrict plant growth and development and may be more susceptible to structural damage through trafficking by agricultural machinery or poaching by grazing livestock.
The previous Bioscan survey similarly found land to be classified as Subgrade 3b due to a wetness limitation.

ADAS Ref: 4205/18/95
MAFF Ref: EL 42/130

Resource Planning Team
Guildford Statutory Group
ADAS Reading

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 : Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 : Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 : Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a : Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b : Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4 : Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 : Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including: housing, industry, commerce, education, transport, religious buildings, cemeteries. Also, hard-surfaced sports facilities, permanent caravan sites and vacant land; all types of derelict land, including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture, including: private parkland, public open spaces, sports fields, allotments and soft-surfaced areas on airports. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply.

Woodland

Includes commercial and non-commercial woodland. A distinction may be made as necessary between farm and non-farm woodland.

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses. Temporary structures (eg. polythene tunnels erected for lambing) may be ignored.

Open Water

Includes lakes, ponds and rivers as map scale permits.

Land Not Surveyed

Agricultural land which has not been surveyed.

Where the land use includes more than one of the above, eg. buildings in large grounds, and where map scale permits, the cover types may be shown separately. Otherwise, the most extensive cover type will be shown.

Agricultural Land Classification Horsham District Local Plan Land at Ifield Court Farm. Reconnaissance Survey

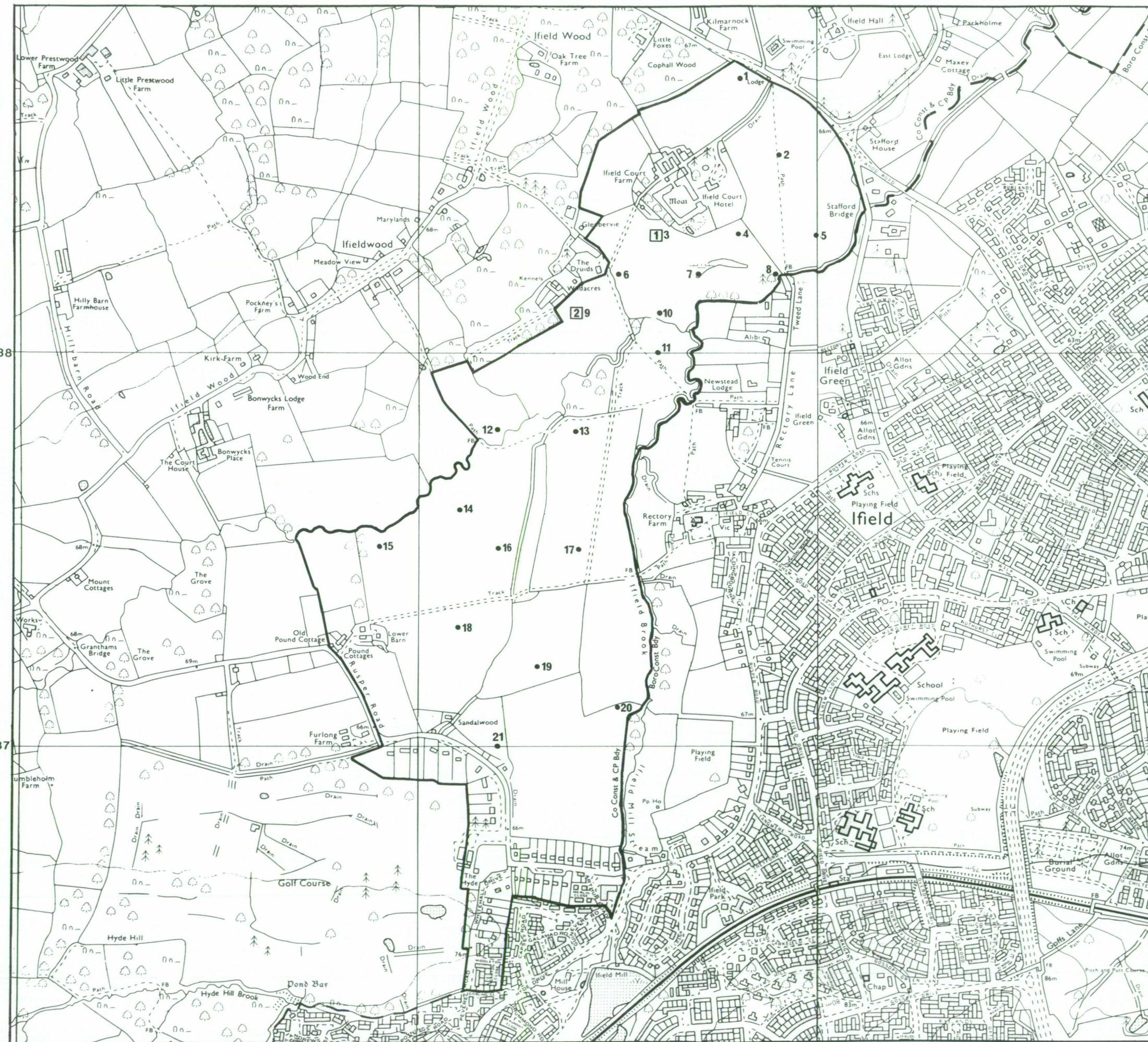
Agricultural Land		
Grade	Quality	Area(ha)
1	Excellent	nil
2	Very Good	nil
3a	Good	nil
3b	Moderate	99.0
4	Poor	nil
5	Very Poor	nil

Other Land Categories		Area (ha)
Urban	17.3	
Non-Agricultural	1.0	
Woodland	1.7	
Agricultural Buildings	0.6	
Open Water	0.4	
Not Surveyed	nil	

Total agricultural land area 99.0
Total survey area 120.0

*Grade/category not present within survey area

Scale 1:10,000


0 100 200 300 400 500 600 700 800 900
Metres
Further details contained in MAFF (1988) Agricultural Land Classification of England and Wales - Revised guidelines and criteria for grading the quality of agricultural land. MAFF (Publications), London SE99 7TP.

The information is accurate at the base map scale but any enlargement would be misleading.

Reproduction in whole or part by any means is prohibited without the prior permission of MAFF.

Surveyed and drawn by the Resource Planning Team, ADAS Statutory Unit, Guildford. Based on the 1992 Ordnance Survey 1:10,000 map with the permission of the Controller of her Majesty's Stationery Office.

Source Map(s): TQ 23 NW TQ 23 NE
Reference no. 4205/18/95 EL 42/130 © Crown Copyright Reserved 1995

23

24

25

Location of Auger Borings
Horsham District Local Plan
Land at Ifield Court Farm.
Reconnaissance Survey

- 5 Auger boring
- 2 Profile pit

Scale 1:10,000
 0 100 200 300 400 500 600 700 800 900 Metres

The information is accurate at the base map scale but any enlargement would be misleading.

Reproduction in whole or part by any means is prohibited without the prior permission of MAFF.

Surveyed and drawn by the Resource Planning Team, ADAS Statutory Unit, Guildford
 Based on the 1992 1983 Ordnance Survey 10,000 map with the permission of the
 Controller of her Majesty's Stationery Office.

Source Map(s) TQ 23 NW TQ 23 NE
 Reference no. 4205/18/95 EL 42/130

© Crown Copyright Reserved 1995

APPENDIX 6.2: FRAMEWORK SOIL MANAGEMENT PLAN

APPENDIX 6.2: FRAMEWORK SOIL MANAGEMENT PLAN

Aims and Objectives

1. The aim of this Framework Soil Management Plan (FSMP) is to maintain, and where possible improve, the quality and quantity of soil resources (i.e., topsoil and subsoil) at the Site in its current physical condition (e.g., soil depth, soil texture, soil structure, soil drainage status), chemical condition (e.g., pH level, nutrient status of available phosphorus, available potassium, available magnesium, total nitrogen, and potentially toxic elements (PTE)) and soil organic matter (SOM) content, in order to maintain soil functions during the demolition and construction phase of the Proposed Development, as appropriate. This FSMP would be developed into a Soil Management Plan (SMP) for each phase of the Proposed Development as a condition of planning consent.
2. Post-consent, the FSMP will require updating in accordance with approved documentation by the appointed contractor prior to any demolition and construction commencing onsite. A detailed Construction Phase Soil Management Plan (CPSMP) would be submitted to the Local Planning Authority (LPA) for approval prior to the start of demolition/construction and this will sit alongside, or form part of, the Detailed Construction Environmental Management Plan (DCEMP), or similar, to be prepared for each phase of the Proposed Development.
3. The ES Volume 1 Chapter 6 includes a description of the location, extent and quality of *in-situ* soil resources (topsoil and subsoil) at the Site prior to construction (i.e., baseline soil status). This includes a desk-based assessment of published information on climate, geology, soils, and an Agricultural Land Classification (ALC) survey.
4. The objective of this FSMP is to set out appropriate methodology to:
 - (i) Determine types (units) of soil according to their resilience to damage (e.g., compaction) during soil handling prior to the commencement of demolition and construction;
 - (ii) Produce maps showing the location and extent of soil resources in separate units identified in (i) prior to the commencement of demolition and construction;
 - (iii) Ensure vehicular traffic over the land is restricted to farm tracks, haul roads or on agricultural land in appropriate weather conditions and soil-wetness state during the demolition, construction, operational and decommissioning phases; and
 - (iv) Where necessary, to strip, store and respread soil resources in appropriate weather conditions and soil-wetness state during the demolition, construction and decommissioning phases.
5. For the detailed component of the Proposed Development (Phase 1), this FSMP and the final SMP should be read in conjunction with the Phase 1 Outline Construction Environmental Management Plan (Phase 1 OCEMP) prepared by Arcadis (10051123-ARC-XXX-ZZ-TR-CM-00001). In particular, Section 5.8 '*Soil Management*' of the Phase 1 OCEMP should be considered.

For the detailed component of the Proposed Development (Phase 1), this FSMP and final SMP should also be read in conjunction with the Earthworks Strategy (Arcadis 0051123-ARC-060-ZZ-TR-CE-00001, October 2023). In summary, the Earthworks Strategy will outline the earthworks activities required to develop the Site. This involves the removal of excess topsoil and materials,

and subsequently the reshaping of the terrain to meet the project's design requirements. The strategy will consider the most efficient, sustainable, and environmentally friendly methods for earthmoving, to reduce waste from the Site and requirements for fill materials. Calculations will be provided to identify volumes of cut and fill expected to develop the Site. Specifically for topsoil *“...Topsoil should be stored for reuse in green landscaping areas and ponds, etc. Where hard landscaping replaces the topsoil, the topsoil should be stored for use in the future development areas.”* Overall, the strategy for soil is to safeguard and reuse soil resources on Site following best practices for the sustainable management and use of soil, as described in more detail below.

General Requirements for Soil Handling

6. This section outlines general requirements for vehicular traffic over agricultural land, and where necessary soil handling, i.e., soil stripping, storage and placement/re-spreading, during the demolition and construction phase.
7. The quality and quantity of soil resources (topsoil and subsoil) within the Site shall be maintained by following the approach of the DEFRA *‘Code of Practice for the Sustainable Management and Use of Soil on Construction Sites’* (Defra, September 2009)¹. This is to achieve the following principal objectives:
 - (i) The avoidance of unnecessary damage to all soil layers, especially by compaction and smearing;
 - (ii) The maintenance of a reasonable degree of fissuring, drainage and aerobic conditions in stored soils;
 - (iii) The reasonable replication of the original sequence of textural horizons and permeability of the soil profile when the materials are reinstated, based on a target restoration profile (i.e., the original/baseline soil profile determined in ES Chapter 6 prior to commencement of construction); and
 - (iv) The preservation of soil biodiversity and Soil Organic Matter (SOM).
8. All soil and soil forming materials shall be handled in accordance with the Institute of Quarrying's Good Practice Guide for Handling Soil (2021), Sheets A – E (handling soil using backtrackers and dump trucks)².
9. When a soil is handled when it is too wet (i.e., the moisture content is at or exceeds the lower plastic limit), then soil strength is reduced, and it becomes prone to structural damage, i.e., it has less resistance to compression and shear. By introducing a force, such as a mechanical excavator, the wet (or plastic) soil can lose its structure and become compacted. As described in Best Practice produced by the Institute of Quarrying (see *‘Supplementary Note 4 – Soil Wetness’*)ⁱⁱ:

‘...The degree of effect due to soil handling is likely to vary between the soil textural class, structural condition, and organic matter content, the local climate and daily weather conditions, but also between the types and size of machinery used and handling practice adopted. The primary cause of compaction arises from the compression caused by trafficking by the machinery and stockpiling of soil in storage. Whilst some degree of remedial actions might be possible, experience has demonstrated that minimising compaction by handling soil in a dry condition is the more effective and reliable, and likely most cost-effective option.’

¹ Department for Environment, Food and Rural Affairs (2009). *‘Code of practice for the sustainable use of soils on construction sites’*. Available online at <https://www.gov.uk/government/publications/code-of-practice-for-the-sustainable-use-of-soils-on-construction-sites> Last Accessed March 2025

² The Institute of Quarrying (2021). *‘Good Practice Guide for Handling Soils in Mineral Workings’* <https://www.quarrying.org/soils-guidance> Last accessed March 2025

10. A field-based determination of when the actual operations should start, cease or restart based upon actual soil wetness is provided. The CPSMP should carefully consider the timing of (i) vehicles trafficking over the land and soil, and (ii) land-work and soil handling operations. The CPSMP should provide mitigation measures to avoid or reduce damage to soil structure, especially when the soil is wet, including a method for determining when land-work and soil handling operations should start, cease and restart based upon actual soil wetness. This may include determination of the 'Plastic Limit' of the different soil types/units following British Standard 1377: 1990 'Methods of test for soils for civil engineering purposes'³.
11. From an '*Indicative on-average months when vegetated mineral soils might be in a sufficiently dry condition according to geographic location, depth of soil and clay content*'⁴ the soil at the Site has a **Low Resilience to Soil Handling (i.e., more than 27% clay)** and it is predicted to be in a sufficiently dry condition as follows:
 - (i) Soil Handling Unit (Low Resilience to Soil Handling): More than 27% clay in Climate Zone 2 = May to November.
12. Throughout the period of working the contractor shall take all reasonable steps to ensure that drainage from areas adjoining the Site is not impaired or rendered less efficient by the permitted operations.
13. The contractor shall take all reasonable steps, including the provision of any necessary works, to prevent damage by erosion, silting or flooding and to make proper provision for the disposal of all water entering, arising on or leaving the Site during the permitted operations.
14. Any oil, fuel, lubricant, paint or solvent within the Site shall be so stored as to prevent such material from contaminating topsoil, subsoil, soil forming material, or reaching any watercourse.
15. Throughout the period of working the contractor shall have due regard to the need to adhere to the precautions for preventing the spread of plant and animal diseases published by the Government online⁵.

Ground Preparation

16. Prior to stripping agricultural topsoil (e.g., access roads, inverters, cable-routes and the sub-station), all above-ground vegetation should be cleared off Site in the areas to be stripped, so that the amount of vegetation within the topsoil strip is minimised (this is to minimise the amount of anaerobic decomposition of vegetation / organic matter that will occur within the topsoil stockpiles).

Haul Roads

17. Vehicles, e.g., heavy goods vehicles (HGV), delivering construction materials should not be permitted to traffic over agricultural land and be restricted to public highways, farm tracks, haul roads and storage compounds.
18. Construction machinery should not traffic over agricultural land which is left in-situ (i.e., where the topsoil has not been stripped) when the soil is too wet. This is to avoid causing soil structural damage by compaction and smearing, and to avoid creating ruts/vehicle wheelings

³ British Standard 1377: 1990 'Methods of test for soils for civil engineering purposes'

⁴ Institute of Quarrying (2021) 'Good Practice Guide for Handlings Soils in Mineral Workings'. Available online at <https://www.quarrying.org/soils-guidance> Last accessed March 2025

⁵ Government Guidance (2022) 'How to stop invasive non-native plants from spreading'. Available online at <https://www.gov.uk/guidance/prevent-the-spread-of-harmful-invasive-and-non-native-plants> Last accessed March 2025

at the ground surface. See '*General Requirements for Soil Handling*' above for guidance on appropriate soil moisture content for soil handling.

19. It is recommended to use temporary haul road systems during the demolition and construction phase to minimise structural damage to the soil. This could involve a heavy-duty composite plastic trackway system on a thin layer of stone, or no stone, e.g., GroundGuards Xtreme Mats 4mx2m Large Mats⁶, or SignaRoad 3mX2m Large Mats⁷, or other similar geotextile material.

Soil Stripping

20. Before any part of the Site is excavated or is built upon, or used for the stacking of topsoil, subsoil or overburden, or as a machinery dump or plant yard, or for the construction of a road, all available topsoil and subsoil shall be stripped from that part.

Soil Storage

21. Bunds for the storage of soils shall conform to the following criteria:

- (i) Topsoil and subsoil (referred to as overburden) in the different soil handling units shall be stored separately.
- (ii) Where continuous bunds are used, dissimilar soils shall be separated by a third material.

22. Soil with Low Sensitivity/High Resilience.

- Topsoil and subsoil with low sensitivity/high resilience shall be stored in bunds which do not exceed 5m in height.

23. Soil with Medium Sensitivity/Moderate Resilience.

- Topsoil and subsoil with medium sensitivity/moderate resilience to soil handling shall be stored in bunds which do not exceed 4m in height.

24. Soil with High Sensitivity/Low Resilience.

- Topsoil and subsoil with high sensitivity/low resilience to soil handling shall be stored in bunds which do not exceed 3m in height.

25. Materials shall be stored like upon like, so that topsoil shall be stripped from beneath subsoil bunds.

26. All storage bunds containing soils which are intended to remain in situ for more than 6 months or over the winter period are to be grassed over and weed control and other necessary maintenance carried out. The seed mixture and the application rates are to be set out in the CPSMP.

27. All topsoil and subsoil storage shall be retained on the Site.

⁶ GroundGuards Xtreme Mats 4mx2m Large Mats. Available online at <https://www.ground-guards.co.uk/product/xtreme-4m-x-2m-mat/> Last accessed March 2025

⁷ SignaRoad 3mX2m Large Mats. Available online at <https://www.ground-guards.co.uk/product/signaroad/> Last accessed March 2025